First version with APIs
Browse files- app.py +177 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
import re
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
import random
|
| 7 |
+
import logging
|
| 8 |
+
import os
|
| 9 |
+
import autopep8
|
| 10 |
+
import textwrap
|
| 11 |
+
import jwt
|
| 12 |
+
from datetime import datetime, timedelta
|
| 13 |
+
|
| 14 |
+
# Set up logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# JWT settings
|
| 19 |
+
JWT_SECRET = os.environ.get("JWT_SECRET", "your-secret-key")
|
| 20 |
+
JWT_ALGORITHM = "HS256"
|
| 21 |
+
|
| 22 |
+
# Model settings
|
| 23 |
+
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
|
| 24 |
+
REPO_ID = "sugiv/leetmonkey-peft-gguf"
|
| 25 |
+
|
| 26 |
+
def download_model(model_name):
|
| 27 |
+
logger.info(f"Downloading model: {model_name}")
|
| 28 |
+
model_path = hf_hub_download(
|
| 29 |
+
repo_id=REPO_ID,
|
| 30 |
+
filename=model_name,
|
| 31 |
+
cache_dir="./models",
|
| 32 |
+
force_download=True,
|
| 33 |
+
resume_download=True
|
| 34 |
+
)
|
| 35 |
+
logger.info(f"Model downloaded: {model_path}")
|
| 36 |
+
return model_path
|
| 37 |
+
|
| 38 |
+
# Download and load the 8-bit model at startup
|
| 39 |
+
model_path = download_model(MODEL_NAME)
|
| 40 |
+
llm = Llama(
|
| 41 |
+
model_path=model_path,
|
| 42 |
+
n_ctx=1024,
|
| 43 |
+
n_threads=8,
|
| 44 |
+
n_gpu_layers=-1, # Use all available GPU layers
|
| 45 |
+
verbose=False,
|
| 46 |
+
n_batch=512,
|
| 47 |
+
mlock=True
|
| 48 |
+
)
|
| 49 |
+
logger.info("8-bit model loaded successfully")
|
| 50 |
+
|
| 51 |
+
# Load the dataset
|
| 52 |
+
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
| 53 |
+
train_dataset = dataset["train"]
|
| 54 |
+
|
| 55 |
+
# Generation parameters
|
| 56 |
+
generation_kwargs = {
|
| 57 |
+
"max_tokens": 512,
|
| 58 |
+
"stop": ["```", "### Instruction:", "### Response:"],
|
| 59 |
+
"echo": False,
|
| 60 |
+
"temperature": 0.05,
|
| 61 |
+
"top_k": 10,
|
| 62 |
+
"top_p": 0.9,
|
| 63 |
+
"repeat_penalty": 1.1
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
def generate_solution(instruction):
|
| 67 |
+
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
| 68 |
+
full_prompt = f"""### Instruction:
|
| 69 |
+
{system_prompt}
|
| 70 |
+
|
| 71 |
+
Implement the following function for the LeetCode problem:
|
| 72 |
+
|
| 73 |
+
{instruction}
|
| 74 |
+
|
| 75 |
+
### Response:
|
| 76 |
+
Here's the complete Python function implementation:
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
for chunk in llm(full_prompt, stream=True, **generation_kwargs):
|
| 82 |
+
yield chunk["choices"][0]["text"]
|
| 83 |
+
|
| 84 |
+
def extract_and_format_code(text):
|
| 85 |
+
# Extract code between triple backticks
|
| 86 |
+
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
| 87 |
+
if code_match:
|
| 88 |
+
code = code_match.group(1)
|
| 89 |
+
else:
|
| 90 |
+
code = text
|
| 91 |
+
|
| 92 |
+
# Dedent the code to remove any common leading whitespace
|
| 93 |
+
code = textwrap.dedent(code)
|
| 94 |
+
|
| 95 |
+
# Split the code into lines
|
| 96 |
+
lines = code.split('\n')
|
| 97 |
+
|
| 98 |
+
# Ensure proper indentation
|
| 99 |
+
indented_lines = []
|
| 100 |
+
for line in lines:
|
| 101 |
+
if line.strip().startswith('class') or line.strip().startswith('def'):
|
| 102 |
+
indented_lines.append(line) # Keep class and function definitions as is
|
| 103 |
+
elif line.strip(): # If the line is not empty
|
| 104 |
+
indented_lines.append(' ' + line) # Add 4 spaces of indentation
|
| 105 |
+
else:
|
| 106 |
+
indented_lines.append(line) # Keep empty lines as is
|
| 107 |
+
|
| 108 |
+
formatted_code = '\n'.join(indented_lines)
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
return autopep8.fix_code(formatted_code)
|
| 112 |
+
except:
|
| 113 |
+
return formatted_code
|
| 114 |
+
|
| 115 |
+
def select_random_problem():
|
| 116 |
+
return random.choice(train_dataset)['instruction']
|
| 117 |
+
|
| 118 |
+
def stream_solution(problem):
|
| 119 |
+
logger.info("Generating solution")
|
| 120 |
+
generated_text = ""
|
| 121 |
+
for token in generate_solution(problem):
|
| 122 |
+
generated_text += token
|
| 123 |
+
yield generated_text
|
| 124 |
+
|
| 125 |
+
formatted_code = extract_and_format_code(generated_text)
|
| 126 |
+
logger.info("Solution generated successfully")
|
| 127 |
+
yield formatted_code
|
| 128 |
+
|
| 129 |
+
def verify_token(token):
|
| 130 |
+
try:
|
| 131 |
+
jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
|
| 132 |
+
return True
|
| 133 |
+
except:
|
| 134 |
+
return False
|
| 135 |
+
|
| 136 |
+
def generate_token():
|
| 137 |
+
expiration = datetime.utcnow() + timedelta(hours=1)
|
| 138 |
+
return jwt.encode({"exp": expiration}, JWT_SECRET, algorithm=JWT_ALGORITHM)
|
| 139 |
+
|
| 140 |
+
def api_random_problem(token):
|
| 141 |
+
if not verify_token(token):
|
| 142 |
+
return {"error": "Invalid token"}
|
| 143 |
+
return {"problem": select_random_problem()}
|
| 144 |
+
|
| 145 |
+
def api_generate_solution(problem, token):
|
| 146 |
+
if not verify_token(token):
|
| 147 |
+
return {"error": "Invalid token"}
|
| 148 |
+
solution = "".join(list(stream_solution(problem)))
|
| 149 |
+
return {"solution": solution}
|
| 150 |
+
|
| 151 |
+
def api_explain_solution(solution, token):
|
| 152 |
+
if not verify_token(token):
|
| 153 |
+
return {"error": "Invalid token"}
|
| 154 |
+
explanation_prompt = f"Explain the following Python code:\n\n{solution}\n\nExplanation:"
|
| 155 |
+
explanation = llm(explanation_prompt, max_tokens=256)["choices"][0]["text"]
|
| 156 |
+
return {"explanation": explanation}
|
| 157 |
+
|
| 158 |
+
iface = gr.Interface(
|
| 159 |
+
fn=[api_random_problem, api_generate_solution, api_explain_solution, generate_token],
|
| 160 |
+
inputs=[
|
| 161 |
+
gr.Textbox(label="JWT Token"),
|
| 162 |
+
gr.Textbox(label="Problem"),
|
| 163 |
+
gr.Textbox(label="Solution")
|
| 164 |
+
],
|
| 165 |
+
outputs=[
|
| 166 |
+
gr.JSON(label="Random Problem"),
|
| 167 |
+
gr.JSON(label="Generated Solution"),
|
| 168 |
+
gr.JSON(label="Explanation"),
|
| 169 |
+
gr.Textbox(label="New JWT Token")
|
| 170 |
+
],
|
| 171 |
+
title="LeetCode Problem Solver API",
|
| 172 |
+
description="API endpoints for generating and explaining LeetCode solutions."
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
if __name__ == "__main__":
|
| 176 |
+
logger.info("Starting Gradio API")
|
| 177 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
llama-cpp-python
|
| 3 |
+
datasets
|
| 4 |
+
transformers
|
| 5 |
+
autopep8
|
| 6 |
+
huggingface_hub
|