File size: 5,110 Bytes
16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 394f072 16fea32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import re
import logging
import textwrap
import autopep8
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import jwt
from typing import Dict, Any
import datetime
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"
# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"
# Generation parameters
generation_kwargs = {
"max_tokens": 512,
"stop": ["```", "### Instruction:", "### Response:"],
"echo": False,
"temperature": 0.05,
"top_k": 10,
"top_p": 0.9,
"repeat_penalty": 1.1
}
def download_model(model_name):
logger.info(f"Downloading model: {model_name}")
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=model_name,
cache_dir="./models",
force_download=True,
resume_download=True
)
logger.info(f"Model downloaded: {model_path}")
return model_path
# Download and load the 8-bit model at startup
model_path = download_model(MODEL_NAME)
llm = Llama(
model_path=model_path,
n_ctx=1024,
n_threads=8,
n_gpu_layers=-1, # Use all available GPU layers
verbose=False,
n_batch=512,
mlock=True
)
logger.info("8-bit model loaded successfully")
def generate_solution(instruction: str) -> str:
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{instruction}
### Response:
Here's the complete Python function implementation:
```python
"""
response = llm(full_prompt, **generation_kwargs)
return response["choices"][0]["text"]
def extract_and_format_code(text: str) -> str:
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if code_match:
code = code_match.group(1)
else:
code = text
code = textwrap.dedent(code)
lines = code.split('\n')
indented_lines = []
for line in lines:
if line.strip().startswith('class') or line.strip().startswith('def'):
indented_lines.append(line)
elif line.strip():
indented_lines.append(' ' + line)
else:
indented_lines.append(line)
formatted_code = '\n'.join(indented_lines)
try:
return autopep8.fix_code(formatted_code)
except:
return formatted_code
def verify_token(token: str) -> bool:
try:
jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
return True
except jwt.PyJWTError:
return False
def api_generate_solution(instruction: str, token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
generated_output = generate_solution(instruction)
formatted_code = extract_and_format_code(generated_output)
return {"solution": formatted_code}
def api_explain_solution(code: str, token: str) -> Dict[str, Any]:
if not verify_token(token):
return {"error": "Invalid token"}
explanation_prompt = f"Explain the following Python code:\n\n{code}\n\nExplanation:"
explanation = llm(explanation_prompt, max_tokens=256)["choices"][0]["text"]
return {"explanation": explanation}
def generate_token() -> str:
expiration = datetime.datetime.utcnow() + datetime.timedelta(hours=1)
payload = {"exp": expiration}
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
return token
# Gradio interfaces
iface_generate = gr.Interface(
fn=api_generate_solution,
inputs=[
gr.Textbox(label="LeetCode Problem Instruction"),
gr.Textbox(label="JWT Token")
],
outputs=gr.JSON(label="Generated Solution"),
title="LeetCode Problem Solver API - Generate Solution",
description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
)
iface_explain = gr.Interface(
fn=api_explain_solution,
inputs=[
gr.Textbox(label="Code to Explain"),
gr.Textbox(label="JWT Token")
],
outputs=gr.JSON(label="Explanation"),
title="LeetCode Problem Solver API - Explain Solution",
description="Provide a code snippet and a valid JWT token to get an explanation."
)
iface_token = gr.Interface(
fn=generate_token,
inputs=[],
outputs=gr.Textbox(label="Generated JWT Token"),
title="Generate JWT Token",
description="Generate a new JWT token for API authentication."
)
# Combine interfaces
demo = gr.TabbedInterface([iface_generate, iface_explain, iface_token], ["Generate Solution", "Explain Solution", "Generate Token"])
if __name__ == "__main__":
logger.info("Starting Gradio API")
demo.launch(share=True)
|