File size: 5,110 Bytes
16fea32
394f072
 
 
16fea32
 
 
 
394f072
16fea32
 
394f072
 
 
 
 
 
16fea32
 
 
394f072
 
 
 
 
 
16fea32
 
 
 
 
 
 
 
 
 
 
394f072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16fea32
394f072
 
 
 
 
 
 
 
 
 
 
 
 
 
16fea32
 
394f072
16fea32
394f072
 
 
 
 
 
 
 
 
 
 
 
16fea32
 
 
394f072
16fea32
394f072
 
 
 
 
 
 
 
16fea32
394f072
 
 
16fea32
394f072
 
16fea32
394f072
 
16fea32
 
 
 
394f072
16fea32
394f072
 
16fea32
 
394f072
 
 
16fea32
 
 
 
 
 
 
 
 
394f072
16fea32
 
394f072
16fea32
 
 
 
 
 
 
 
 
 
394f072
16fea32
 
 
394f072
 
16fea32
 
 
 
 
 
 
 
 
 
 
394f072
 
16fea32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import re
import logging
import textwrap
import autopep8
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import jwt
from typing import Dict, Any
import datetime

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
    raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"

# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"

# Generation parameters
generation_kwargs = {
    "max_tokens": 512,
    "stop": ["```", "### Instruction:", "### Response:"],
    "echo": False,
    "temperature": 0.05,
    "top_k": 10,
    "top_p": 0.9,
    "repeat_penalty": 1.1
}

def download_model(model_name):
    logger.info(f"Downloading model: {model_name}")
    model_path = hf_hub_download(
        repo_id=REPO_ID,
        filename=model_name,
        cache_dir="./models",
        force_download=True,
        resume_download=True
    )
    logger.info(f"Model downloaded: {model_path}")
    return model_path

# Download and load the 8-bit model at startup
model_path = download_model(MODEL_NAME)
llm = Llama(
    model_path=model_path,
    n_ctx=1024,
    n_threads=8,
    n_gpu_layers=-1,  # Use all available GPU layers
    verbose=False,
    n_batch=512,
    mlock=True
)
logger.info("8-bit model loaded successfully")

def generate_solution(instruction: str) -> str:
    system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
    full_prompt = f"""### Instruction:
{system_prompt}

Implement the following function for the LeetCode problem:

{instruction}

### Response:
Here's the complete Python function implementation:

```python
"""
    
    response = llm(full_prompt, **generation_kwargs)
    return response["choices"][0]["text"]

def extract_and_format_code(text: str) -> str:
    code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
    if code_match:
        code = code_match.group(1)
    else:
        code = text

    code = textwrap.dedent(code)
    lines = code.split('\n')

    indented_lines = []
    for line in lines:
        if line.strip().startswith('class') or line.strip().startswith('def'):
            indented_lines.append(line)
        elif line.strip():
            indented_lines.append('    ' + line)
        else:
            indented_lines.append(line)

    formatted_code = '\n'.join(indented_lines)

    try:
        return autopep8.fix_code(formatted_code)
    except:
        return formatted_code

def verify_token(token: str) -> bool:
    try:
        jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
        return True
    except jwt.PyJWTError:
        return False

def api_generate_solution(instruction: str, token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    generated_output = generate_solution(instruction)
    formatted_code = extract_and_format_code(generated_output)
    return {"solution": formatted_code}

def api_explain_solution(code: str, token: str) -> Dict[str, Any]:
    if not verify_token(token):
        return {"error": "Invalid token"}
    
    explanation_prompt = f"Explain the following Python code:\n\n{code}\n\nExplanation:"
    explanation = llm(explanation_prompt, max_tokens=256)["choices"][0]["text"]
    return {"explanation": explanation}

def generate_token() -> str:
    expiration = datetime.datetime.utcnow() + datetime.timedelta(hours=1)
    payload = {"exp": expiration}
    token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
    return token

# Gradio interfaces
iface_generate = gr.Interface(
    fn=api_generate_solution,
    inputs=[
        gr.Textbox(label="LeetCode Problem Instruction"),
        gr.Textbox(label="JWT Token")
    ],
    outputs=gr.JSON(label="Generated Solution"),
    title="LeetCode Problem Solver API - Generate Solution",
    description="Provide a LeetCode problem instruction and a valid JWT token to generate a solution."
)

iface_explain = gr.Interface(
    fn=api_explain_solution,
    inputs=[
        gr.Textbox(label="Code to Explain"),
        gr.Textbox(label="JWT Token")
    ],
    outputs=gr.JSON(label="Explanation"),
    title="LeetCode Problem Solver API - Explain Solution",
    description="Provide a code snippet and a valid JWT token to get an explanation."
)

iface_token = gr.Interface(
    fn=generate_token,
    inputs=[],
    outputs=gr.Textbox(label="Generated JWT Token"),
    title="Generate JWT Token",
    description="Generate a new JWT token for API authentication."
)

# Combine interfaces
demo = gr.TabbedInterface([iface_generate, iface_explain, iface_token], ["Generate Solution", "Explain Solution", "Generate Token"])

if __name__ == "__main__":
    logger.info("Starting Gradio API")
    demo.launch(share=True)