suayptalha commited on
Commit
8a5872a
·
verified ·
1 Parent(s): 1e5a891

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -57
app.py CHANGED
@@ -1,70 +1,23 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
  from gradio_client import Client, handle_file
4
 
5
- # Initialize the HuggingFace InferenceClient or another client if needed
6
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
- # Function to process image and return a description using another API (e.g., Moondream2)
9
  def describe_image(image):
10
- # Call the external API to get a description of the image
11
  result = client.predict(
12
- img=handle_file(image),
13
- prompt="Describe this image.",
14
- api_name="/answer_question"
15
  )
16
  return result
17
 
18
- def respond(
19
- message,
20
- history: list[tuple[str, str]],
21
- system_message,
22
- max_tokens,
23
- temperature,
24
- top_p,
25
- image
26
- ):
27
- messages = [{"role": "system", "content": system_message}]
28
-
29
- for val in history:
30
- if val[0]:
31
- messages.append({"role": "user", "content": val[0]})
32
- if val[1]:
33
- messages.append({"role": "assistant", "content": val[1]})
34
-
35
- # Process the image if provided
36
- if image:
37
- description = describe_image(image)
38
- return description
39
-
40
- # If no image, proceed with the usual chat flow
41
- messages.append({"role": "user", "content": message})
42
-
43
- response = ""
44
-
45
- for message in client.chat_completion(
46
- messages,
47
- max_tokens=max_tokens,
48
- stream=True,
49
- temperature=temperature,
50
- top_p=top_p,
51
- ):
52
- token = message.choices[0].delta.content
53
-
54
- response += token
55
- yield response
56
-
57
- # Set up the Gradio interface with image input and output for description
58
  demo = gr.Interface(
59
- fn=respond,
60
- inputs=[
61
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
62
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
63
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
64
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
65
- gr.Image(type="file", label="Upload Image") # Allow image upload
66
- ],
67
- outputs="text", # Display the description as text output
68
  )
69
 
70
  if __name__ == "__main__":
 
1
  import gradio as gr
 
2
  from gradio_client import Client, handle_file
3
 
4
+ # Moondream2 API'sine bağlanmak için Client'ı başlatıyoruz
5
+ client = Client("vikhyatk/moondream2")
6
 
7
+ # Resmi açıklamak için kullanılan fonksiyon
8
  def describe_image(image):
 
9
  result = client.predict(
10
+ img=handle_file(image), # Kullanıcının yüklediği resmi API'ye gönderiyoruz
11
+ prompt="Describe this image.", # Resmi açıklama isteği
12
+ api_name="/answer_question" # API'nin doğru endpoint'i
13
  )
14
  return result
15
 
16
+ # Gradio arayüzü tanımlıyoruz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  demo = gr.Interface(
18
+ fn=describe_image, # Resmi açıklamak için fonksiyon
19
+ inputs=gr.Image(type="filepath", label="Resim Yükle"), # Resim yükleme alanı
20
+ outputs="text", # Çıktı olarak metin (resmin açıklaması) alacağız
 
 
 
 
 
 
21
  )
22
 
23
  if __name__ == "__main__":