Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,71 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from gradio_client import Client, handle_file
|
3 |
|
4 |
-
#
|
5 |
-
client =
|
6 |
|
7 |
-
|
8 |
-
def
|
9 |
-
|
10 |
-
This function processes the uploaded image and sends it to the Gradio app.
|
11 |
-
"""
|
12 |
-
# Convert the uploaded image to a format compatible with the Gradio Client
|
13 |
-
image_file = handle_file(image) # Handle the uploaded image as a file
|
14 |
result = client.predict(
|
15 |
-
img=
|
16 |
prompt="Describe this image.",
|
17 |
api_name="/answer_question"
|
18 |
)
|
19 |
return result
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
with
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
from gradio_client import Client, handle_file
|
4 |
|
5 |
+
# Initialize the HuggingFace InferenceClient or another client if needed
|
6 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
7 |
|
8 |
+
# Function to process image and return a description using another API (e.g., Moondream2)
|
9 |
+
def describe_image(image):
|
10 |
+
# Call the external API to get a description of the image
|
|
|
|
|
|
|
|
|
11 |
result = client.predict(
|
12 |
+
img=handle_file(image),
|
13 |
prompt="Describe this image.",
|
14 |
api_name="/answer_question"
|
15 |
)
|
16 |
return result
|
17 |
|
18 |
+
def respond(
|
19 |
+
message,
|
20 |
+
history: list[tuple[str, str]],
|
21 |
+
system_message,
|
22 |
+
max_tokens,
|
23 |
+
temperature,
|
24 |
+
top_p,
|
25 |
+
image
|
26 |
+
):
|
27 |
+
messages = [{"role": "system", "content": system_message}]
|
28 |
+
|
29 |
+
for val in history:
|
30 |
+
if val[0]:
|
31 |
+
messages.append({"role": "user", "content": val[0]})
|
32 |
+
if val[1]:
|
33 |
+
messages.append({"role": "assistant", "content": val[1]})
|
34 |
|
35 |
+
# Process the image if provided
|
36 |
+
if image:
|
37 |
+
description = describe_image(image)
|
38 |
+
return description
|
39 |
|
40 |
+
# If no image, proceed with the usual chat flow
|
41 |
+
messages.append({"role": "user", "content": message})
|
42 |
+
|
43 |
+
response = ""
|
44 |
+
|
45 |
+
for message in client.chat_completion(
|
46 |
+
messages,
|
47 |
+
max_tokens=max_tokens,
|
48 |
+
stream=True,
|
49 |
+
temperature=temperature,
|
50 |
+
top_p=top_p,
|
51 |
+
):
|
52 |
+
token = message.choices[0].delta.content
|
53 |
|
54 |
+
response += token
|
55 |
+
yield response
|
56 |
|
57 |
+
# Set up the Gradio interface with image input and output for description
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=respond,
|
60 |
+
inputs=[
|
61 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
62 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
63 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
64 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
65 |
+
gr.Image(type="file", label="Upload Image") # Allow image upload
|
66 |
+
],
|
67 |
+
outputs="text", # Display the description as text output
|
68 |
+
)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
demo.launch()
|