EasyAnimate / easyanimate /pipeline /pipeline_easyanimate_multi_text_encoder_inpaint.py
bubbliiiing
Update V5
f62c8b9
raw
history blame
67.8 kB
# Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from diffusers import DiffusionPipeline
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel
from diffusers.models.embeddings import (get_2d_rotary_pos_embed,
get_3d_rotary_pos_embed)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import (is_torch_xla_available, logging,
replace_example_docstring)
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from PIL import Image
from tqdm import tqdm
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor,
CLIPVisionModelWithProjection, T5Tokenizer,
T5EncoderModel)
from .pipeline_easyanimate import EasyAnimatePipelineOutput
from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> pass
```
"""
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
def resize_mask(mask, latent, process_first_frame_only=True):
latent_size = latent.size()
if process_first_frame_only:
target_size = list(latent_size[2:])
target_size[0] = 1
first_frame_resized = F.interpolate(
mask[:, :, 0:1, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
target_size = list(latent_size[2:])
target_size[0] = target_size[0] - 1
if target_size[0] != 0:
remaining_frames_resized = F.interpolate(
mask[:, :, 1:, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
else:
resized_mask = first_frame_resized
else:
target_size = list(latent_size[2:])
resized_mask = F.interpolate(
mask,
size=target_size,
mode='trilinear',
align_corners=False
)
return resized_mask
def add_noise_to_reference_video(image, ratio=None):
if ratio is None:
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
sigma = torch.exp(sigma).to(image.dtype)
else:
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
image = image + image_noise
return image
class EasyAnimatePipeline_Multi_Text_Encoder_Inpaint(DiffusionPipeline):
r"""
Pipeline for text-to-video generation using EasyAnimate.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
HunyuanDiT team)
Args:
vae ([`AutoencoderKLMagvit`]):
Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
EasyAnimate uses a fine-tuned [bilingual CLIP].
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
transformer ([`EasyAnimateTransformer3DModel`]):
The EasyAnimate model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder.
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
clip_image_processor (`CLIPImageProcessor`):
The CLIP image embedder.
clip_image_encoder (`CLIPVisionModelWithProjection`):
The image processor for the CLIP image embedder.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->clip_image_encoder->transformer->vae"
_optional_components = [
"safety_checker",
"feature_extractor",
"text_encoder_2",
"tokenizer_2",
"text_encoder",
"tokenizer",
"clip_image_encoder",
]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
"prompt_embeds_2",
"negative_prompt_embeds_2",
]
def __init__(
self,
vae: AutoencoderKLMagvit,
text_encoder: BertModel,
tokenizer: BertTokenizer,
text_encoder_2: T5EncoderModel,
tokenizer_2: T5Tokenizer,
transformer: EasyAnimateTransformer3DModel,
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
clip_image_processor: CLIPImageProcessor = None,
clip_image_encoder: CLIPVisionModelWithProjection = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
text_encoder_2=text_encoder_2,
clip_image_processor=clip_image_processor,
clip_image_encoder=clip_image_encoder,
)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.enable_autocast_float8_transformer_flag = False
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_sequential_cpu_offload(self, *args, **kwargs):
super().enable_sequential_cpu_offload(*args, **kwargs)
if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None:
import accelerate
accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True)
self.transformer.clip_projection = self.transformer.clip_projection.to("cuda")
def encode_prompt(
self,
prompt: str,
device: torch.device,
dtype: torch.dtype,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: Optional[int] = None,
text_encoder_index: int = 0,
actual_max_sequence_length: int = 256
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
dtype (`torch.dtype`):
torch dtype
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
text_encoder_index (`int`, *optional*):
Index of the text encoder to use. `0` for clip and `1` for T5.
"""
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = tokenizers[text_encoder_index]
text_encoder = text_encoders[text_encoder_index]
if max_sequence_length is None:
if text_encoder_index == 0:
max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length)
if text_encoder_index == 1:
max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length)
else:
max_length = max_sequence_length
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > actual_max_sequence_length:
reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
text_inputs = tokenizer(
reprompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
_actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length)
removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {_actual_max_sequence_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask.to(device)
if self.transformer.config.enable_text_attention_mask:
prompt_embeds = text_encoder(
text_input_ids.to(device),
attention_mask=prompt_attention_mask,
)
else:
prompt_embeds = text_encoder(
text_input_ids.to(device)
)
prompt_embeds = prompt_embeds[0]
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids
if uncond_input_ids.shape[-1] > actual_max_sequence_length:
reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
uncond_input = tokenizer(
reuncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
if self.transformer.config.enable_text_attention_mask:
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
attention_mask=negative_prompt_attention_mask,
)
else:
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device)
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
prompt_embeds_2=None,
negative_prompt_embeds_2=None,
prompt_attention_mask_2=None,
negative_prompt_attention_mask_2=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is None and prompt_embeds_2 is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
raise ValueError(
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
raise ValueError(
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
f" {negative_prompt_embeds_2.shape}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
if mask is not None:
mask = mask.to(device=device, dtype=self.vae.dtype)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_mask = []
for i in range(0, mask.shape[0], bs):
mask_bs = mask[i : i + bs]
mask_bs = self.vae.encode(mask_bs)[0]
mask_bs = mask_bs.mode()
new_mask.append(mask_bs)
mask = torch.cat(new_mask, dim = 0)
mask = mask * self.vae.config.scaling_factor
else:
if mask.shape[1] == 4:
mask = mask
else:
video_length = mask.shape[2]
mask = rearrange(mask, "b c f h w -> (b f) c h w")
mask = self._encode_vae_image(mask, generator=generator)
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=video_length)
if masked_image is not None:
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
if self.transformer.config.add_noise_in_inpaint_model:
masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_mask_pixel_values = []
for i in range(0, masked_image.shape[0], bs):
mask_pixel_values_bs = masked_image[i : i + bs]
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
mask_pixel_values_bs = mask_pixel_values_bs.mode()
new_mask_pixel_values.append(mask_pixel_values_bs)
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
else:
if masked_image.shape[1] == 4:
masked_image_latents = masked_image
else:
video_length = masked_image.shape[2]
masked_image = rearrange(masked_image, "b c f h w -> (b f) c h w")
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
masked_image_latents = rearrange(masked_image_latents, "(b f) c h w -> b c f h w", f=video_length)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
else:
masked_image_latents = None
return mask, masked_image_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
video_length,
dtype,
device,
generator,
latents=None,
video=None,
timestep=None,
is_strength_max=True,
return_noise=False,
return_video_latents=False,
):
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
if self.vae.cache_mag_vae:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
else:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
else:
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if return_video_latents or (latents is None and not is_strength_max):
video = video.to(device=device, dtype=self.vae.dtype)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_video = []
for i in range(0, video.shape[0], bs):
video_bs = video[i : i + bs]
video_bs = self.vae.encode(video_bs)[0]
video_bs = video_bs.sample()
new_video.append(video_bs)
video = torch.cat(new_video, dim = 0)
video = video * self.vae.config.scaling_factor
else:
if video.shape[1] == 4:
video = video
else:
video_length = video.shape[2]
video = rearrange(video, "b c f h w -> (b f) c h w")
video = self._encode_vae_image(video, generator=generator)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1)
video_latents = video_latents.to(device=device, dtype=dtype)
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
else:
noise = latents.to(device)
latents = noise * self.scheduler.init_noise_sigma
# scale the initial noise by the standard deviation required by the scheduler
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_video_latents:
outputs += (video_latents,)
return outputs
def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder):
if video.size()[2] <= mini_batch_encoder:
return video
prefix_index_before = mini_batch_encoder // 2
prefix_index_after = mini_batch_encoder - prefix_index_before
pixel_values = video[:, :, prefix_index_before:-prefix_index_after]
# Encode middle videos
latents = self.vae.encode(pixel_values)[0]
latents = latents.mode()
# Decode middle videos
middle_video = self.vae.decode(latents)[0]
video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2
return video
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / self.vae.config.scaling_factor * latents
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
video = self.vae.decode(latents)[0]
video = video.clamp(-1, 1)
if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae:
video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1)
else:
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = []
for frame_idx in tqdm(range(latents.shape[0])):
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
def enable_autocast_float8_transformer(self):
self.enable_autocast_float8_transformer_flag = True
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
video_length: Optional[int] = None,
video: Union[torch.FloatTensor] = None,
mask_video: Union[torch.FloatTensor] = None,
masked_video_latents: Union[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_2: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
prompt_attention_mask_2: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
output_type: Optional[str] = "latent",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = (1024, 1024),
target_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
clip_image: Image = None,
clip_apply_ratio: float = 0.40,
strength: float = 1.0,
noise_aug_strength: float = 0.0563,
comfyui_progressbar: bool = False,
):
r"""
The call function to the pipeline for generation with HunyuanDiT.
Examples:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
video_length (`int`, *optional*):
Length of the video to be generated in seconds. This parameter influences the number of frames and
continuity of generated content.
video (`torch.FloatTensor`, *optional*):
A tensor representing an input video, which can be modified depending on the prompts provided.
mask_video (`torch.FloatTensor`, *optional*):
A tensor to specify areas of the video to be masked (omitted from generation).
masked_video_latents (`torch.FloatTensor`, *optional*):
Latents from masked portions of the video, utilized during image generation.
height (`int`, *optional*):
The height in pixels of the generated image or video frames.
width (`int`, *optional*):
The width in pixels of the generated image or video frames.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image but slower
inference time. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 5.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to exclude in image generation. If not defined, you need to
provide `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
A parameter defined in the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the
[`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the
inference process.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting
random seeds which helps in making generation deterministic.
latents (`torch.Tensor`, *optional*):
A pre-computed latent representation which can be used to guide the generation process.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, embeddings are generated from the `prompt` input argument.
prompt_embeds_2 (`torch.Tensor`, *optional*):
Secondary set of pre-generated text embeddings, useful for advanced prompt weighting.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the outputs.
If not provided, embeddings are generated from the `negative_prompt` argument.
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
Secondary set of pre-generated negative text embeddings for further control.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using
`prompt_embeds`.
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the secondary prompt embedding.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used.
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the secondary negative prompt embedding.
output_type (`str`, *optional*, defaults to `"latent"`):
The output format of the generated image. Choose between `PIL.Image` and `np.array` to define
how you want the results to be formatted.
return_dict (`bool`, *optional*, defaults to `True`):
If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned;
otherwise, a tuple containing the generated images and safety flags will be returned.
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A callback function (or a list of them) that will be executed at the end of each denoising step,
allowing for custom processing during generation.
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
Specifies which tensor inputs should be included in the callback function. If not defined, all tensor
inputs will be passed, facilitating enhanced logging or monitoring of the generation process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
The original dimensions of the image. Used to compute time ids during the generation process.
target_size (`Tuple[int, int]`, *optional*):
The targeted dimensions of the generated image, also utilized in the time id calculations.
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
Coordinates defining the top left corner of any cropping, utilized while calculating the time ids.
clip_image (`Image`, *optional*):
An optional image to assist in the generation process. It may be used as an additional visual cue.
clip_apply_ratio (`float`, *optional*, defaults to 0.40):
Ratio indicating how much influence the clip image should exert over the generated content.
strength (`float`, *optional*, defaults to 1.0):
Affects the overall styling or quality of the generated output. Values closer to 1 usually provide direct
adherence to prompts.
comfyui_progressbar (`bool`, *optional*, defaults to `False`):
Enables a progress bar in ComfyUI, providing visual feedback during the generation process.
Examples:
# Example usage of the function for generating images based on prompts.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Returns either a structured output containing generated images and their metadata when `return_dict` is
`True`, or a simpler tuple, where the first element is a list of generated images and the second
element indicates if any of them contain "not-safe-for-work" (NSFW) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 0. default height and width
height = int(height // 16 * 16)
width = int(width // 16 * 16)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
text_encoder_index=0,
)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds_2,
negative_prompt_embeds=negative_prompt_embeds_2,
prompt_attention_mask=prompt_attention_mask_2,
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
text_encoder_index=1,
)
torch.cuda.empty_cache()
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
if comfyui_progressbar:
from comfy.utils import ProgressBar
pbar = ProgressBar(num_inference_steps + 3)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
if video is not None:
video_length = video.shape[2]
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width)
init_video = init_video.to(dtype=torch.float32)
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length)
else:
init_video = None
# Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_transformer = self.transformer.config.in_channels
return_image_latents = num_channels_transformer == num_channels_latents
# 5. Prepare latents.
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
video_length,
prompt_embeds.dtype,
device,
generator,
latents,
video=init_video,
timestep=latent_timestep,
is_strength_max=is_strength_max,
return_noise=True,
return_video_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs
if comfyui_progressbar:
pbar.update(1)
# 6. Prepare clip latents if it needs.
if clip_image is not None and self.transformer.enable_clip_in_inpaint:
inputs = self.clip_image_processor(images=clip_image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states = self.clip_image_encoder(**inputs).last_hidden_state[:, 1:]
clip_encoder_hidden_states_neg = torch.zeros(
[
batch_size,
int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2,
int(self.clip_image_encoder.config.hidden_size)
]
).to(latents.device, dtype=latents.dtype)
clip_attention_mask = torch.ones([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype)
clip_attention_mask_neg = torch.zeros([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states_neg, clip_encoder_hidden_states]) if self.do_classifier_free_guidance else clip_encoder_hidden_states
clip_attention_mask_input = torch.cat([clip_attention_mask_neg, clip_attention_mask]) if self.do_classifier_free_guidance else clip_attention_mask
elif clip_image is None and num_channels_transformer != num_channels_latents and self.transformer.enable_clip_in_inpaint:
clip_encoder_hidden_states = torch.zeros(
[
batch_size,
int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2,
int(self.clip_image_encoder.config.hidden_size)
]
).to(latents.device, dtype=latents.dtype)
clip_attention_mask = torch.zeros([batch_size, self.transformer.n_query])
clip_attention_mask = clip_attention_mask.to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states] * 2) if self.do_classifier_free_guidance else clip_encoder_hidden_states
clip_attention_mask_input = torch.cat([clip_attention_mask] * 2) if self.do_classifier_free_guidance else clip_attention_mask
else:
clip_encoder_hidden_states_input = None
clip_attention_mask_input = None
if comfyui_progressbar:
pbar.update(1)
# 7. Prepare inpaint latents if it needs.
if mask_video is not None:
if (mask_video == 255).all():
# Use zero latents if we want to t2v.
if self.transformer.resize_inpaint_mask_directly:
mask_latents = torch.zeros_like(latents)[:, :1].to(latents.device, latents.dtype)
else:
mask_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
# Prepare mask latent variables
video_length = video.shape[2]
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width)
mask_condition = mask_condition.to(dtype=torch.float32)
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length)
if num_channels_transformer != num_channels_latents:
mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1])
if masked_video_latents is None:
masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1
else:
masked_video = masked_video_latents
if self.transformer.resize_inpaint_mask_directly:
_, masked_video_latents = self.prepare_mask_latents(
None,
masked_video,
batch_size,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
noise_aug_strength=noise_aug_strength,
)
mask_latents = resize_mask(1 - mask_condition, masked_video_latents, self.vae.cache_mag_vae)
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor
else:
mask_latents, masked_video_latents = self.prepare_mask_latents(
mask_condition_tile,
masked_video,
batch_size,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
noise_aug_strength=noise_aug_strength,
)
mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
inpaint_latents = None
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
else:
if num_channels_transformer != num_channels_latents:
mask = torch.zeros_like(latents).to(latents.device, latents.dtype)
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
mask_input = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
mask = torch.zeros_like(init_video[:, :1])
mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1])
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
inpaint_latents = None
if comfyui_progressbar:
pbar.update(1)
# Check that sizes of mask, masked image and latents match
if num_channels_transformer != num_channels_latents:
num_channels_mask = mask_latents.shape[1]
num_channels_masked_image = masked_video_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.transformer` or your `mask_image` or `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9 create image_rotary_emb, style embedding & time ids
grid_height = height // 8 // self.transformer.config.patch_size
grid_width = width // 8 // self.transformer.config.patch_size
if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope":
base_size_width = 720 // 8 // self.transformer.config.patch_size
base_size_height = 480 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
image_rotary_emb = get_3d_rotary_pos_embed(
self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width),
temporal_size=latents.size(2), use_real=True,
)
else:
base_size = 512 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size, base_size
)
image_rotary_emb = get_2d_rotary_pos_embed(
self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width)
)
# Get other hunyuan params
style = torch.tensor([0], device=device)
target_size = target_size or (height, width)
add_time_ids = list(original_size + target_size + crops_coords_top_left)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
style = torch.cat([style] * 2, dim=0)
prompt_embeds = prompt_embeds.to(device=device)
prompt_attention_mask = prompt_attention_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device)
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
batch_size * num_images_per_prompt, 1
)
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
torch.cuda.empty_cache()
if self.enable_autocast_float8_transformer_flag:
origin_weight_dtype = self.transformer.dtype
self.transformer = self.transformer.to(torch.float8_e4m3fn)
# 10. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if i < len(timesteps) * (1 - clip_apply_ratio) and clip_encoder_hidden_states_input is not None:
clip_encoder_hidden_states_actual_input = torch.zeros_like(clip_encoder_hidden_states_input)
clip_attention_mask_actual_input = torch.zeros_like(clip_attention_mask_input)
else:
clip_encoder_hidden_states_actual_input = clip_encoder_hidden_states_input
clip_attention_mask_actual_input = clip_attention_mask_input
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
dtype=latent_model_input.dtype
)
# predict the noise residual
noise_pred = self.transformer(
latent_model_input,
t_expand,
encoder_hidden_states=prompt_embeds,
text_embedding_mask=prompt_attention_mask,
encoder_hidden_states_t5=prompt_embeds_2,
text_embedding_mask_t5=prompt_attention_mask_2,
image_meta_size=add_time_ids,
style=style,
image_rotary_emb=image_rotary_emb,
inpaint_latents=inpaint_latents,
clip_encoder_hidden_states=clip_encoder_hidden_states_actual_input,
clip_attention_mask=clip_attention_mask_actual_input,
return_dict=False,
)[0]
if noise_pred.size()[1] != self.vae.config.latent_channels:
noise_pred, _ = noise_pred.chunk(2, dim=1)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if num_channels_transformer == 4:
init_latents_proper = image_latents
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
negative_prompt_embeds_2 = callback_outputs.pop(
"negative_prompt_embeds_2", negative_prompt_embeds_2
)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if comfyui_progressbar:
pbar.update(1)
if self.enable_autocast_float8_transformer_flag:
self.transformer = self.transformer.to("cpu", origin_weight_dtype)
torch.cuda.empty_cache()
# Post-processing
video = self.decode_latents(latents)
# Convert to tensor
if output_type == "latent":
video = torch.from_numpy(video)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return video
return EasyAnimatePipelineOutput(videos=video)