Spaces:
Sleeping
Sleeping
| # Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers import DiffusionPipeline | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, HunyuanDiT2DModel | |
| from diffusers.models.embeddings import (get_2d_rotary_pos_embed, | |
| get_3d_rotary_pos_embed) | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion.safety_checker import \ | |
| StableDiffusionSafetyChecker | |
| from diffusers.schedulers import DDIMScheduler | |
| from diffusers.utils import (is_torch_xla_available, logging, | |
| replace_example_docstring) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from PIL import Image | |
| from tqdm import tqdm | |
| from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, T5Tokenizer, | |
| T5EncoderModel) | |
| from .pipeline_easyanimate import EasyAnimatePipelineOutput | |
| from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> pass | |
| ``` | |
| """ | |
| def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| def resize_mask(mask, latent, process_first_frame_only=True): | |
| latent_size = latent.size() | |
| if process_first_frame_only: | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = 1 | |
| first_frame_resized = F.interpolate( | |
| mask[:, :, 0:1, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = target_size[0] - 1 | |
| if target_size[0] != 0: | |
| remaining_frames_resized = F.interpolate( | |
| mask[:, :, 1:, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) | |
| else: | |
| resized_mask = first_frame_resized | |
| else: | |
| target_size = list(latent_size[2:]) | |
| resized_mask = F.interpolate( | |
| mask, | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| return resized_mask | |
| def add_noise_to_reference_video(image, ratio=None): | |
| if ratio is None: | |
| sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) | |
| sigma = torch.exp(sigma).to(image.dtype) | |
| else: | |
| sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio | |
| image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] | |
| image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise) | |
| image = image + image_noise | |
| return image | |
| class EasyAnimatePipeline_Multi_Text_Encoder_Inpaint(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using EasyAnimate. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by | |
| HunyuanDiT team) | |
| Args: | |
| vae ([`AutoencoderKLMagvit`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. | |
| text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| EasyAnimate uses a fine-tuned [bilingual CLIP]. | |
| tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]): | |
| A `BertTokenizer` or `CLIPTokenizer` to tokenize text. | |
| transformer ([`EasyAnimateTransformer3DModel`]): | |
| The EasyAnimate model designed by Tencent Hunyuan. | |
| text_encoder_2 (`T5EncoderModel`): | |
| The mT5 embedder. | |
| tokenizer_2 (`T5Tokenizer`): | |
| The tokenizer for the mT5 embedder. | |
| scheduler ([`DDIMScheduler`]): | |
| A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents. | |
| clip_image_processor (`CLIPImageProcessor`): | |
| The CLIP image embedder. | |
| clip_image_encoder (`CLIPVisionModelWithProjection`): | |
| The image processor for the CLIP image embedder. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->clip_image_encoder->transformer->vae" | |
| _optional_components = [ | |
| "safety_checker", | |
| "feature_extractor", | |
| "text_encoder_2", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "tokenizer", | |
| "clip_image_encoder", | |
| ] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "prompt_embeds_2", | |
| "negative_prompt_embeds_2", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKLMagvit, | |
| text_encoder: BertModel, | |
| tokenizer: BertTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5Tokenizer, | |
| transformer: EasyAnimateTransformer3DModel, | |
| scheduler: DDIMScheduler, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| clip_image_processor: CLIPImageProcessor = None, | |
| clip_image_encoder: CLIPVisionModelWithProjection = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| text_encoder_2=text_encoder_2, | |
| clip_image_processor=clip_image_processor, | |
| clip_image_encoder=clip_image_encoder, | |
| ) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
| ) | |
| self.enable_autocast_float8_transformer_flag = False | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def enable_sequential_cpu_offload(self, *args, **kwargs): | |
| super().enable_sequential_cpu_offload(*args, **kwargs) | |
| if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None: | |
| import accelerate | |
| accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True) | |
| self.transformer.clip_projection = self.transformer.clip_projection.to("cuda") | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| max_sequence_length: Optional[int] = None, | |
| text_encoder_index: int = 0, | |
| actual_max_sequence_length: int = 256 | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| dtype (`torch.dtype`): | |
| torch dtype | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
| max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. | |
| text_encoder_index (`int`, *optional*): | |
| Index of the text encoder to use. `0` for clip and `1` for T5. | |
| """ | |
| tokenizers = [self.tokenizer, self.tokenizer_2] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| tokenizer = tokenizers[text_encoder_index] | |
| text_encoder = text_encoders[text_encoder_index] | |
| if max_sequence_length is None: | |
| if text_encoder_index == 0: | |
| max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length) | |
| if text_encoder_index == 1: | |
| max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length) | |
| else: | |
| max_length = max_sequence_length | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| if text_input_ids.shape[-1] > actual_max_sequence_length: | |
| reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
| text_inputs = tokenizer( | |
| reprompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| _actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length) | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {_actual_max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask.to(device) | |
| if self.transformer.config.enable_text_attention_mask: | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=prompt_attention_mask, | |
| ) | |
| else: | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device) | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_input.input_ids | |
| if uncond_input_ids.shape[-1] > actual_max_sequence_length: | |
| reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
| uncond_input = tokenizer( | |
| reuncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_input.input_ids | |
| negative_prompt_attention_mask = uncond_input.attention_mask.to(device) | |
| if self.transformer.config.enable_text_attention_mask: | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=negative_prompt_attention_mask, | |
| ) | |
| else: | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device) | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| prompt_embeds_2=None, | |
| negative_prompt_embeds_2=None, | |
| prompt_attention_mask_2=None, | |
| negative_prompt_attention_mask_2=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is None and prompt_embeds_2 is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: | |
| raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: | |
| raise ValueError( | |
| "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: | |
| if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: | |
| raise ValueError( | |
| "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" | |
| f" {negative_prompt_embeds_2.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_mask_latents( | |
| self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| if mask is not None: | |
| mask = mask.to(device=device, dtype=self.vae.dtype) | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| bs = 1 | |
| new_mask = [] | |
| for i in range(0, mask.shape[0], bs): | |
| mask_bs = mask[i : i + bs] | |
| mask_bs = self.vae.encode(mask_bs)[0] | |
| mask_bs = mask_bs.mode() | |
| new_mask.append(mask_bs) | |
| mask = torch.cat(new_mask, dim = 0) | |
| mask = mask * self.vae.config.scaling_factor | |
| else: | |
| if mask.shape[1] == 4: | |
| mask = mask | |
| else: | |
| video_length = mask.shape[2] | |
| mask = rearrange(mask, "b c f h w -> (b f) c h w") | |
| mask = self._encode_vae_image(mask, generator=generator) | |
| mask = rearrange(mask, "(b f) c h w -> b c f h w", f=video_length) | |
| if masked_image is not None: | |
| masked_image = masked_image.to(device=device, dtype=self.vae.dtype) | |
| if self.transformer.config.add_noise_in_inpaint_model: | |
| masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength) | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| bs = 1 | |
| new_mask_pixel_values = [] | |
| for i in range(0, masked_image.shape[0], bs): | |
| mask_pixel_values_bs = masked_image[i : i + bs] | |
| mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] | |
| mask_pixel_values_bs = mask_pixel_values_bs.mode() | |
| new_mask_pixel_values.append(mask_pixel_values_bs) | |
| masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) | |
| masked_image_latents = masked_image_latents * self.vae.config.scaling_factor | |
| else: | |
| if masked_image.shape[1] == 4: | |
| masked_image_latents = masked_image | |
| else: | |
| video_length = masked_image.shape[2] | |
| masked_image = rearrange(masked_image, "b c f h w -> (b f) c h w") | |
| masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | |
| masked_image_latents = rearrange(masked_image_latents, "(b f) c h w -> b c f h w", f=video_length) | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| else: | |
| masked_image_latents = None | |
| return mask, masked_image_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| video_length, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| video=None, | |
| timestep=None, | |
| is_strength_max=True, | |
| return_noise=False, | |
| return_video_latents=False, | |
| ): | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| if self.vae.cache_mag_vae: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| else: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| else: | |
| shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if return_video_latents or (latents is None and not is_strength_max): | |
| video = video.to(device=device, dtype=self.vae.dtype) | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| bs = 1 | |
| new_video = [] | |
| for i in range(0, video.shape[0], bs): | |
| video_bs = video[i : i + bs] | |
| video_bs = self.vae.encode(video_bs)[0] | |
| video_bs = video_bs.sample() | |
| new_video.append(video_bs) | |
| video = torch.cat(new_video, dim = 0) | |
| video = video * self.vae.config.scaling_factor | |
| else: | |
| if video.shape[1] == 4: | |
| video = video | |
| else: | |
| video_length = video.shape[2] | |
| video = rearrange(video, "b c f h w -> (b f) c h w") | |
| video = self._encode_vae_image(video, generator=generator) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1) | |
| video_latents = video_latents.to(device=device, dtype=dtype) | |
| if latents is None: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # if strength is 1. then initialise the latents to noise, else initial to image + noise | |
| latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) | |
| # if pure noise then scale the initial latents by the Scheduler's init sigma | |
| latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | |
| else: | |
| noise = latents.to(device) | |
| latents = noise * self.scheduler.init_noise_sigma | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| outputs = (latents,) | |
| if return_noise: | |
| outputs += (noise,) | |
| if return_video_latents: | |
| outputs += (video_latents,) | |
| return outputs | |
| def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder): | |
| if video.size()[2] <= mini_batch_encoder: | |
| return video | |
| prefix_index_before = mini_batch_encoder // 2 | |
| prefix_index_after = mini_batch_encoder - prefix_index_before | |
| pixel_values = video[:, :, prefix_index_before:-prefix_index_after] | |
| # Encode middle videos | |
| latents = self.vae.encode(pixel_values)[0] | |
| latents = latents.mode() | |
| # Decode middle videos | |
| middle_video = self.vae.decode(latents)[0] | |
| video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2 | |
| return video | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| video = self.vae.decode(latents)[0] | |
| video = video.clamp(-1, 1) | |
| if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae: | |
| video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1) | |
| else: | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| video = [] | |
| for frame_idx in tqdm(range(latents.shape[0])): | |
| video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
| video = torch.cat(video) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def enable_autocast_float8_transformer(self): | |
| self.enable_autocast_float8_transformer_flag = True | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| video_length: Optional[int] = None, | |
| video: Union[torch.FloatTensor] = None, | |
| mask_video: Union[torch.FloatTensor] = None, | |
| masked_video_latents: Union[torch.FloatTensor] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_embeds_2: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds_2: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "latent", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = (1024, 1024), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| clip_image: Image = None, | |
| clip_apply_ratio: float = 0.40, | |
| strength: float = 1.0, | |
| noise_aug_strength: float = 0.0563, | |
| comfyui_progressbar: bool = False, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation with HunyuanDiT. | |
| Examples: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| video_length (`int`, *optional*): | |
| Length of the video to be generated in seconds. This parameter influences the number of frames and | |
| continuity of generated content. | |
| video (`torch.FloatTensor`, *optional*): | |
| A tensor representing an input video, which can be modified depending on the prompts provided. | |
| mask_video (`torch.FloatTensor`, *optional*): | |
| A tensor to specify areas of the video to be masked (omitted from generation). | |
| masked_video_latents (`torch.FloatTensor`, *optional*): | |
| Latents from masked portions of the video, utilized during image generation. | |
| height (`int`, *optional*): | |
| The height in pixels of the generated image or video frames. | |
| width (`int`, *optional*): | |
| The width in pixels of the generated image or video frames. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image but slower | |
| inference time. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to exclude in image generation. If not defined, you need to | |
| provide `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| A parameter defined in the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the | |
| [`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the | |
| inference process. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting | |
| random seeds which helps in making generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| A pre-computed latent representation which can be used to guide the generation process. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, embeddings are generated from the `prompt` input argument. | |
| prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Secondary set of pre-generated text embeddings, useful for advanced prompt weighting. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the outputs. | |
| If not provided, embeddings are generated from the `negative_prompt` argument. | |
| negative_prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Secondary set of pre-generated negative text embeddings for further control. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using | |
| `prompt_embeds`. | |
| prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for the secondary prompt embedding. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used. | |
| negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for the secondary negative prompt embedding. | |
| output_type (`str`, *optional*, defaults to `"latent"`): | |
| The output format of the generated image. Choose between `PIL.Image` and `np.array` to define | |
| how you want the results to be formatted. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned; | |
| otherwise, a tuple containing the generated images and safety flags will be returned. | |
| callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A callback function (or a list of them) that will be executed at the end of each denoising step, | |
| allowing for custom processing during generation. | |
| callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
| Specifies which tensor inputs should be included in the callback function. If not defined, all tensor | |
| inputs will be passed, facilitating enhanced logging or monitoring of the generation process. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): | |
| The original dimensions of the image. Used to compute time ids during the generation process. | |
| target_size (`Tuple[int, int]`, *optional*): | |
| The targeted dimensions of the generated image, also utilized in the time id calculations. | |
| crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): | |
| Coordinates defining the top left corner of any cropping, utilized while calculating the time ids. | |
| clip_image (`Image`, *optional*): | |
| An optional image to assist in the generation process. It may be used as an additional visual cue. | |
| clip_apply_ratio (`float`, *optional*, defaults to 0.40): | |
| Ratio indicating how much influence the clip image should exert over the generated content. | |
| strength (`float`, *optional*, defaults to 1.0): | |
| Affects the overall styling or quality of the generated output. Values closer to 1 usually provide direct | |
| adherence to prompts. | |
| comfyui_progressbar (`bool`, *optional*, defaults to `False`): | |
| Enables a progress bar in ComfyUI, providing visual feedback during the generation process. | |
| Examples: | |
| # Example usage of the function for generating images based on prompts. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| Returns either a structured output containing generated images and their metadata when `return_dict` is | |
| `True`, or a simpler tuple, where the first element is a list of generated images and the second | |
| element indicates if any of them contain "not-safe-for-work" (NSFW) content. | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. default height and width | |
| height = int(height // 16 * 16) | |
| width = int(width // 16 * 16) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=self.transformer.dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| text_encoder_index=0, | |
| ) | |
| ( | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=self.transformer.dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds_2, | |
| negative_prompt_embeds=negative_prompt_embeds_2, | |
| prompt_attention_mask=prompt_attention_mask_2, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask_2, | |
| text_encoder_index=1, | |
| ) | |
| torch.cuda.empty_cache() | |
| # 4. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps=num_inference_steps, strength=strength, device=device | |
| ) | |
| if comfyui_progressbar: | |
| from comfy.utils import ProgressBar | |
| pbar = ProgressBar(num_inference_steps + 3) | |
| # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
| is_strength_max = strength == 1.0 | |
| if video is not None: | |
| video_length = video.shape[2] | |
| init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| init_video = init_video.to(dtype=torch.float32) | |
| init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length) | |
| else: | |
| init_video = None | |
| # Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| num_channels_transformer = self.transformer.config.in_channels | |
| return_image_latents = num_channels_transformer == num_channels_latents | |
| # 5. Prepare latents. | |
| latents_outputs = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| video_length, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| video=init_video, | |
| timestep=latent_timestep, | |
| is_strength_max=is_strength_max, | |
| return_noise=True, | |
| return_video_latents=return_image_latents, | |
| ) | |
| if return_image_latents: | |
| latents, noise, image_latents = latents_outputs | |
| else: | |
| latents, noise = latents_outputs | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # 6. Prepare clip latents if it needs. | |
| if clip_image is not None and self.transformer.enable_clip_in_inpaint: | |
| inputs = self.clip_image_processor(images=clip_image, return_tensors="pt") | |
| inputs["pixel_values"] = inputs["pixel_values"].to(latents.device, dtype=latents.dtype) | |
| clip_encoder_hidden_states = self.clip_image_encoder(**inputs).last_hidden_state[:, 1:] | |
| clip_encoder_hidden_states_neg = torch.zeros( | |
| [ | |
| batch_size, | |
| int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2, | |
| int(self.clip_image_encoder.config.hidden_size) | |
| ] | |
| ).to(latents.device, dtype=latents.dtype) | |
| clip_attention_mask = torch.ones([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype) | |
| clip_attention_mask_neg = torch.zeros([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype) | |
| clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states_neg, clip_encoder_hidden_states]) if self.do_classifier_free_guidance else clip_encoder_hidden_states | |
| clip_attention_mask_input = torch.cat([clip_attention_mask_neg, clip_attention_mask]) if self.do_classifier_free_guidance else clip_attention_mask | |
| elif clip_image is None and num_channels_transformer != num_channels_latents and self.transformer.enable_clip_in_inpaint: | |
| clip_encoder_hidden_states = torch.zeros( | |
| [ | |
| batch_size, | |
| int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2, | |
| int(self.clip_image_encoder.config.hidden_size) | |
| ] | |
| ).to(latents.device, dtype=latents.dtype) | |
| clip_attention_mask = torch.zeros([batch_size, self.transformer.n_query]) | |
| clip_attention_mask = clip_attention_mask.to(latents.device, dtype=latents.dtype) | |
| clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states] * 2) if self.do_classifier_free_guidance else clip_encoder_hidden_states | |
| clip_attention_mask_input = torch.cat([clip_attention_mask] * 2) if self.do_classifier_free_guidance else clip_attention_mask | |
| else: | |
| clip_encoder_hidden_states_input = None | |
| clip_attention_mask_input = None | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # 7. Prepare inpaint latents if it needs. | |
| if mask_video is not None: | |
| if (mask_video == 255).all(): | |
| # Use zero latents if we want to t2v. | |
| if self.transformer.resize_inpaint_mask_directly: | |
| mask_latents = torch.zeros_like(latents)[:, :1].to(latents.device, latents.dtype) | |
| else: | |
| mask_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
| masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
| mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype) | |
| else: | |
| # Prepare mask latent variables | |
| video_length = video.shape[2] | |
| mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| mask_condition = mask_condition.to(dtype=torch.float32) | |
| mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length) | |
| if num_channels_transformer != num_channels_latents: | |
| mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1]) | |
| if masked_video_latents is None: | |
| masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1 | |
| else: | |
| masked_video = masked_video_latents | |
| if self.transformer.resize_inpaint_mask_directly: | |
| _, masked_video_latents = self.prepare_mask_latents( | |
| None, | |
| masked_video, | |
| batch_size, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance, | |
| noise_aug_strength=noise_aug_strength, | |
| ) | |
| mask_latents = resize_mask(1 - mask_condition, masked_video_latents, self.vae.cache_mag_vae) | |
| mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor | |
| else: | |
| mask_latents, masked_video_latents = self.prepare_mask_latents( | |
| mask_condition_tile, | |
| masked_video, | |
| batch_size, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance, | |
| noise_aug_strength=noise_aug_strength, | |
| ) | |
| mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype) | |
| else: | |
| inpaint_latents = None | |
| mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) | |
| mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) | |
| else: | |
| if num_channels_transformer != num_channels_latents: | |
| mask = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
| masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
| mask_input = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype) | |
| else: | |
| mask = torch.zeros_like(init_video[:, :1]) | |
| mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1]) | |
| mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) | |
| inpaint_latents = None | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # Check that sizes of mask, masked image and latents match | |
| if num_channels_transformer != num_channels_latents: | |
| num_channels_mask = mask_latents.shape[1] | |
| num_channels_masked_image = masked_video_latents.shape[1] | |
| if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects" | |
| f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
| f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
| " `pipeline.transformer` or your `mask_image` or `image` input." | |
| ) | |
| # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 9 create image_rotary_emb, style embedding & time ids | |
| grid_height = height // 8 // self.transformer.config.patch_size | |
| grid_width = width // 8 // self.transformer.config.patch_size | |
| if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope": | |
| base_size_width = 720 // 8 // self.transformer.config.patch_size | |
| base_size_height = 480 // 8 // self.transformer.config.patch_size | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size_width, base_size_height | |
| ) | |
| image_rotary_emb = get_3d_rotary_pos_embed( | |
| self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width), | |
| temporal_size=latents.size(2), use_real=True, | |
| ) | |
| else: | |
| base_size = 512 // 8 // self.transformer.config.patch_size | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size, base_size | |
| ) | |
| image_rotary_emb = get_2d_rotary_pos_embed( | |
| self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width) | |
| ) | |
| # Get other hunyuan params | |
| style = torch.tensor([0], device=device) | |
| target_size = target_size or (height, width) | |
| add_time_ids = list(original_size + target_size + crops_coords_top_left) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) | |
| prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) | |
| prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) | |
| add_time_ids = torch.cat([add_time_ids] * 2, dim=0) | |
| style = torch.cat([style] * 2, dim=0) | |
| prompt_embeds = prompt_embeds.to(device=device) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| prompt_embeds_2 = prompt_embeds_2.to(device=device) | |
| prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) | |
| add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat( | |
| batch_size * num_images_per_prompt, 1 | |
| ) | |
| style = style.to(device=device).repeat(batch_size * num_images_per_prompt) | |
| torch.cuda.empty_cache() | |
| if self.enable_autocast_float8_transformer_flag: | |
| origin_weight_dtype = self.transformer.dtype | |
| self.transformer = self.transformer.to(torch.float8_e4m3fn) | |
| # 10. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if i < len(timesteps) * (1 - clip_apply_ratio) and clip_encoder_hidden_states_input is not None: | |
| clip_encoder_hidden_states_actual_input = torch.zeros_like(clip_encoder_hidden_states_input) | |
| clip_attention_mask_actual_input = torch.zeros_like(clip_attention_mask_input) | |
| else: | |
| clip_encoder_hidden_states_actual_input = clip_encoder_hidden_states_input | |
| clip_attention_mask_actual_input = clip_attention_mask_input | |
| # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input | |
| t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( | |
| dtype=latent_model_input.dtype | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| t_expand, | |
| encoder_hidden_states=prompt_embeds, | |
| text_embedding_mask=prompt_attention_mask, | |
| encoder_hidden_states_t5=prompt_embeds_2, | |
| text_embedding_mask_t5=prompt_attention_mask_2, | |
| image_meta_size=add_time_ids, | |
| style=style, | |
| image_rotary_emb=image_rotary_emb, | |
| inpaint_latents=inpaint_latents, | |
| clip_encoder_hidden_states=clip_encoder_hidden_states_actual_input, | |
| clip_attention_mask=clip_attention_mask_actual_input, | |
| return_dict=False, | |
| )[0] | |
| if noise_pred.size()[1] != self.vae.config.latent_channels: | |
| noise_pred, _ = noise_pred.chunk(2, dim=1) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if num_channels_transformer == 4: | |
| init_latents_proper = image_latents | |
| init_mask = mask | |
| if i < len(timesteps) - 1: | |
| noise_timestep = timesteps[i + 1] | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, noise, torch.tensor([noise_timestep]) | |
| ) | |
| latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) | |
| negative_prompt_embeds_2 = callback_outputs.pop( | |
| "negative_prompt_embeds_2", negative_prompt_embeds_2 | |
| ) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| if self.enable_autocast_float8_transformer_flag: | |
| self.transformer = self.transformer.to("cpu", origin_weight_dtype) | |
| torch.cuda.empty_cache() | |
| # Post-processing | |
| video = self.decode_latents(latents) | |
| # Convert to tensor | |
| if output_type == "latent": | |
| video = torch.from_numpy(video) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return video | |
| return EasyAnimatePipelineOutput(videos=video) |