Spaces:
Running
Running
File size: 67,783 Bytes
f62c8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 |
# Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from diffusers import DiffusionPipeline
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel
from diffusers.models.embeddings import (get_2d_rotary_pos_embed,
get_3d_rotary_pos_embed)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import (is_torch_xla_available, logging,
replace_example_docstring)
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from PIL import Image
from tqdm import tqdm
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor,
CLIPVisionModelWithProjection, T5Tokenizer,
T5EncoderModel)
from .pipeline_easyanimate import EasyAnimatePipelineOutput
from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> pass
```
"""
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
def resize_mask(mask, latent, process_first_frame_only=True):
latent_size = latent.size()
if process_first_frame_only:
target_size = list(latent_size[2:])
target_size[0] = 1
first_frame_resized = F.interpolate(
mask[:, :, 0:1, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
target_size = list(latent_size[2:])
target_size[0] = target_size[0] - 1
if target_size[0] != 0:
remaining_frames_resized = F.interpolate(
mask[:, :, 1:, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
else:
resized_mask = first_frame_resized
else:
target_size = list(latent_size[2:])
resized_mask = F.interpolate(
mask,
size=target_size,
mode='trilinear',
align_corners=False
)
return resized_mask
def add_noise_to_reference_video(image, ratio=None):
if ratio is None:
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
sigma = torch.exp(sigma).to(image.dtype)
else:
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
image = image + image_noise
return image
class EasyAnimatePipeline_Multi_Text_Encoder_Inpaint(DiffusionPipeline):
r"""
Pipeline for text-to-video generation using EasyAnimate.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
HunyuanDiT team)
Args:
vae ([`AutoencoderKLMagvit`]):
Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
EasyAnimate uses a fine-tuned [bilingual CLIP].
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
transformer ([`EasyAnimateTransformer3DModel`]):
The EasyAnimate model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder.
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
clip_image_processor (`CLIPImageProcessor`):
The CLIP image embedder.
clip_image_encoder (`CLIPVisionModelWithProjection`):
The image processor for the CLIP image embedder.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->clip_image_encoder->transformer->vae"
_optional_components = [
"safety_checker",
"feature_extractor",
"text_encoder_2",
"tokenizer_2",
"text_encoder",
"tokenizer",
"clip_image_encoder",
]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
"prompt_embeds_2",
"negative_prompt_embeds_2",
]
def __init__(
self,
vae: AutoencoderKLMagvit,
text_encoder: BertModel,
tokenizer: BertTokenizer,
text_encoder_2: T5EncoderModel,
tokenizer_2: T5Tokenizer,
transformer: EasyAnimateTransformer3DModel,
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
clip_image_processor: CLIPImageProcessor = None,
clip_image_encoder: CLIPVisionModelWithProjection = None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
text_encoder_2=text_encoder_2,
clip_image_processor=clip_image_processor,
clip_image_encoder=clip_image_encoder,
)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.enable_autocast_float8_transformer_flag = False
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_sequential_cpu_offload(self, *args, **kwargs):
super().enable_sequential_cpu_offload(*args, **kwargs)
if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None:
import accelerate
accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True)
self.transformer.clip_projection = self.transformer.clip_projection.to("cuda")
def encode_prompt(
self,
prompt: str,
device: torch.device,
dtype: torch.dtype,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: Optional[int] = None,
text_encoder_index: int = 0,
actual_max_sequence_length: int = 256
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
dtype (`torch.dtype`):
torch dtype
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
text_encoder_index (`int`, *optional*):
Index of the text encoder to use. `0` for clip and `1` for T5.
"""
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = tokenizers[text_encoder_index]
text_encoder = text_encoders[text_encoder_index]
if max_sequence_length is None:
if text_encoder_index == 0:
max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length)
if text_encoder_index == 1:
max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length)
else:
max_length = max_sequence_length
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > actual_max_sequence_length:
reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
text_inputs = tokenizer(
reprompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
_actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length)
removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {_actual_max_sequence_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask.to(device)
if self.transformer.config.enable_text_attention_mask:
prompt_embeds = text_encoder(
text_input_ids.to(device),
attention_mask=prompt_attention_mask,
)
else:
prompt_embeds = text_encoder(
text_input_ids.to(device)
)
prompt_embeds = prompt_embeds[0]
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids
if uncond_input_ids.shape[-1] > actual_max_sequence_length:
reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True)
uncond_input = tokenizer(
reuncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
if self.transformer.config.enable_text_attention_mask:
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
attention_mask=negative_prompt_attention_mask,
)
else:
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device)
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
prompt_embeds_2=None,
negative_prompt_embeds_2=None,
prompt_attention_mask_2=None,
negative_prompt_attention_mask_2=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is None and prompt_embeds_2 is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
raise ValueError(
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
raise ValueError(
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
f" {negative_prompt_embeds_2.shape}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
if mask is not None:
mask = mask.to(device=device, dtype=self.vae.dtype)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_mask = []
for i in range(0, mask.shape[0], bs):
mask_bs = mask[i : i + bs]
mask_bs = self.vae.encode(mask_bs)[0]
mask_bs = mask_bs.mode()
new_mask.append(mask_bs)
mask = torch.cat(new_mask, dim = 0)
mask = mask * self.vae.config.scaling_factor
else:
if mask.shape[1] == 4:
mask = mask
else:
video_length = mask.shape[2]
mask = rearrange(mask, "b c f h w -> (b f) c h w")
mask = self._encode_vae_image(mask, generator=generator)
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=video_length)
if masked_image is not None:
masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
if self.transformer.config.add_noise_in_inpaint_model:
masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_mask_pixel_values = []
for i in range(0, masked_image.shape[0], bs):
mask_pixel_values_bs = masked_image[i : i + bs]
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
mask_pixel_values_bs = mask_pixel_values_bs.mode()
new_mask_pixel_values.append(mask_pixel_values_bs)
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
else:
if masked_image.shape[1] == 4:
masked_image_latents = masked_image
else:
video_length = masked_image.shape[2]
masked_image = rearrange(masked_image, "b c f h w -> (b f) c h w")
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
masked_image_latents = rearrange(masked_image_latents, "(b f) c h w -> b c f h w", f=video_length)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
else:
masked_image_latents = None
return mask, masked_image_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
video_length,
dtype,
device,
generator,
latents=None,
video=None,
timestep=None,
is_strength_max=True,
return_noise=False,
return_video_latents=False,
):
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
if self.vae.cache_mag_vae:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
else:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor)
else:
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if return_video_latents or (latents is None and not is_strength_max):
video = video.to(device=device, dtype=self.vae.dtype)
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
bs = 1
new_video = []
for i in range(0, video.shape[0], bs):
video_bs = video[i : i + bs]
video_bs = self.vae.encode(video_bs)[0]
video_bs = video_bs.sample()
new_video.append(video_bs)
video = torch.cat(new_video, dim = 0)
video = video * self.vae.config.scaling_factor
else:
if video.shape[1] == 4:
video = video
else:
video_length = video.shape[2]
video = rearrange(video, "b c f h w -> (b f) c h w")
video = self._encode_vae_image(video, generator=generator)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1)
video_latents = video_latents.to(device=device, dtype=dtype)
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
else:
noise = latents.to(device)
latents = noise * self.scheduler.init_noise_sigma
# scale the initial noise by the standard deviation required by the scheduler
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_video_latents:
outputs += (video_latents,)
return outputs
def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder):
if video.size()[2] <= mini_batch_encoder:
return video
prefix_index_before = mini_batch_encoder // 2
prefix_index_after = mini_batch_encoder - prefix_index_before
pixel_values = video[:, :, prefix_index_before:-prefix_index_after]
# Encode middle videos
latents = self.vae.encode(pixel_values)[0]
latents = latents.mode()
# Decode middle videos
middle_video = self.vae.decode(latents)[0]
video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2
return video
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / self.vae.config.scaling_factor * latents
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5:
mini_batch_encoder = self.vae.mini_batch_encoder
mini_batch_decoder = self.vae.mini_batch_decoder
video = self.vae.decode(latents)[0]
video = video.clamp(-1, 1)
if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae:
video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1)
else:
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = []
for frame_idx in tqdm(range(latents.shape[0])):
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
def enable_autocast_float8_transformer(self):
self.enable_autocast_float8_transformer_flag = True
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
video_length: Optional[int] = None,
video: Union[torch.FloatTensor] = None,
mask_video: Union[torch.FloatTensor] = None,
masked_video_latents: Union[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_2: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
prompt_attention_mask_2: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
output_type: Optional[str] = "latent",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = (1024, 1024),
target_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
clip_image: Image = None,
clip_apply_ratio: float = 0.40,
strength: float = 1.0,
noise_aug_strength: float = 0.0563,
comfyui_progressbar: bool = False,
):
r"""
The call function to the pipeline for generation with HunyuanDiT.
Examples:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
video_length (`int`, *optional*):
Length of the video to be generated in seconds. This parameter influences the number of frames and
continuity of generated content.
video (`torch.FloatTensor`, *optional*):
A tensor representing an input video, which can be modified depending on the prompts provided.
mask_video (`torch.FloatTensor`, *optional*):
A tensor to specify areas of the video to be masked (omitted from generation).
masked_video_latents (`torch.FloatTensor`, *optional*):
Latents from masked portions of the video, utilized during image generation.
height (`int`, *optional*):
The height in pixels of the generated image or video frames.
width (`int`, *optional*):
The width in pixels of the generated image or video frames.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image but slower
inference time. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 5.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to exclude in image generation. If not defined, you need to
provide `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
A parameter defined in the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the
[`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the
inference process.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting
random seeds which helps in making generation deterministic.
latents (`torch.Tensor`, *optional*):
A pre-computed latent representation which can be used to guide the generation process.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, embeddings are generated from the `prompt` input argument.
prompt_embeds_2 (`torch.Tensor`, *optional*):
Secondary set of pre-generated text embeddings, useful for advanced prompt weighting.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the outputs.
If not provided, embeddings are generated from the `negative_prompt` argument.
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
Secondary set of pre-generated negative text embeddings for further control.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using
`prompt_embeds`.
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the secondary prompt embedding.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used.
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the secondary negative prompt embedding.
output_type (`str`, *optional*, defaults to `"latent"`):
The output format of the generated image. Choose between `PIL.Image` and `np.array` to define
how you want the results to be formatted.
return_dict (`bool`, *optional*, defaults to `True`):
If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned;
otherwise, a tuple containing the generated images and safety flags will be returned.
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A callback function (or a list of them) that will be executed at the end of each denoising step,
allowing for custom processing during generation.
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
Specifies which tensor inputs should be included in the callback function. If not defined, all tensor
inputs will be passed, facilitating enhanced logging or monitoring of the generation process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
The original dimensions of the image. Used to compute time ids during the generation process.
target_size (`Tuple[int, int]`, *optional*):
The targeted dimensions of the generated image, also utilized in the time id calculations.
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
Coordinates defining the top left corner of any cropping, utilized while calculating the time ids.
clip_image (`Image`, *optional*):
An optional image to assist in the generation process. It may be used as an additional visual cue.
clip_apply_ratio (`float`, *optional*, defaults to 0.40):
Ratio indicating how much influence the clip image should exert over the generated content.
strength (`float`, *optional*, defaults to 1.0):
Affects the overall styling or quality of the generated output. Values closer to 1 usually provide direct
adherence to prompts.
comfyui_progressbar (`bool`, *optional*, defaults to `False`):
Enables a progress bar in ComfyUI, providing visual feedback during the generation process.
Examples:
# Example usage of the function for generating images based on prompts.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Returns either a structured output containing generated images and their metadata when `return_dict` is
`True`, or a simpler tuple, where the first element is a list of generated images and the second
element indicates if any of them contain "not-safe-for-work" (NSFW) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 0. default height and width
height = int(height // 16 * 16)
width = int(width // 16 * 16)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
text_encoder_index=0,
)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds_2,
negative_prompt_embeds=negative_prompt_embeds_2,
prompt_attention_mask=prompt_attention_mask_2,
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
text_encoder_index=1,
)
torch.cuda.empty_cache()
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
if comfyui_progressbar:
from comfy.utils import ProgressBar
pbar = ProgressBar(num_inference_steps + 3)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
if video is not None:
video_length = video.shape[2]
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width)
init_video = init_video.to(dtype=torch.float32)
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length)
else:
init_video = None
# Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_transformer = self.transformer.config.in_channels
return_image_latents = num_channels_transformer == num_channels_latents
# 5. Prepare latents.
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
video_length,
prompt_embeds.dtype,
device,
generator,
latents,
video=init_video,
timestep=latent_timestep,
is_strength_max=is_strength_max,
return_noise=True,
return_video_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs
if comfyui_progressbar:
pbar.update(1)
# 6. Prepare clip latents if it needs.
if clip_image is not None and self.transformer.enable_clip_in_inpaint:
inputs = self.clip_image_processor(images=clip_image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states = self.clip_image_encoder(**inputs).last_hidden_state[:, 1:]
clip_encoder_hidden_states_neg = torch.zeros(
[
batch_size,
int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2,
int(self.clip_image_encoder.config.hidden_size)
]
).to(latents.device, dtype=latents.dtype)
clip_attention_mask = torch.ones([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype)
clip_attention_mask_neg = torch.zeros([batch_size, self.transformer.n_query]).to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states_neg, clip_encoder_hidden_states]) if self.do_classifier_free_guidance else clip_encoder_hidden_states
clip_attention_mask_input = torch.cat([clip_attention_mask_neg, clip_attention_mask]) if self.do_classifier_free_guidance else clip_attention_mask
elif clip_image is None and num_channels_transformer != num_channels_latents and self.transformer.enable_clip_in_inpaint:
clip_encoder_hidden_states = torch.zeros(
[
batch_size,
int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2,
int(self.clip_image_encoder.config.hidden_size)
]
).to(latents.device, dtype=latents.dtype)
clip_attention_mask = torch.zeros([batch_size, self.transformer.n_query])
clip_attention_mask = clip_attention_mask.to(latents.device, dtype=latents.dtype)
clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states] * 2) if self.do_classifier_free_guidance else clip_encoder_hidden_states
clip_attention_mask_input = torch.cat([clip_attention_mask] * 2) if self.do_classifier_free_guidance else clip_attention_mask
else:
clip_encoder_hidden_states_input = None
clip_attention_mask_input = None
if comfyui_progressbar:
pbar.update(1)
# 7. Prepare inpaint latents if it needs.
if mask_video is not None:
if (mask_video == 255).all():
# Use zero latents if we want to t2v.
if self.transformer.resize_inpaint_mask_directly:
mask_latents = torch.zeros_like(latents)[:, :1].to(latents.device, latents.dtype)
else:
mask_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
# Prepare mask latent variables
video_length = video.shape[2]
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width)
mask_condition = mask_condition.to(dtype=torch.float32)
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length)
if num_channels_transformer != num_channels_latents:
mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1])
if masked_video_latents is None:
masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1
else:
masked_video = masked_video_latents
if self.transformer.resize_inpaint_mask_directly:
_, masked_video_latents = self.prepare_mask_latents(
None,
masked_video,
batch_size,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
noise_aug_strength=noise_aug_strength,
)
mask_latents = resize_mask(1 - mask_condition, masked_video_latents, self.vae.cache_mag_vae)
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor
else:
mask_latents, masked_video_latents = self.prepare_mask_latents(
mask_condition_tile,
masked_video,
batch_size,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
noise_aug_strength=noise_aug_strength,
)
mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
inpaint_latents = None
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
else:
if num_channels_transformer != num_channels_latents:
mask = torch.zeros_like(latents).to(latents.device, latents.dtype)
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype)
mask_input = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask
masked_video_latents_input = (
torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
)
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype)
else:
mask = torch.zeros_like(init_video[:, :1])
mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1])
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype)
inpaint_latents = None
if comfyui_progressbar:
pbar.update(1)
# Check that sizes of mask, masked image and latents match
if num_channels_transformer != num_channels_latents:
num_channels_mask = mask_latents.shape[1]
num_channels_masked_image = masked_video_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.transformer` or your `mask_image` or `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9 create image_rotary_emb, style embedding & time ids
grid_height = height // 8 // self.transformer.config.patch_size
grid_width = width // 8 // self.transformer.config.patch_size
if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope":
base_size_width = 720 // 8 // self.transformer.config.patch_size
base_size_height = 480 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
image_rotary_emb = get_3d_rotary_pos_embed(
self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width),
temporal_size=latents.size(2), use_real=True,
)
else:
base_size = 512 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size, base_size
)
image_rotary_emb = get_2d_rotary_pos_embed(
self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width)
)
# Get other hunyuan params
style = torch.tensor([0], device=device)
target_size = target_size or (height, width)
add_time_ids = list(original_size + target_size + crops_coords_top_left)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
style = torch.cat([style] * 2, dim=0)
prompt_embeds = prompt_embeds.to(device=device)
prompt_attention_mask = prompt_attention_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device)
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
batch_size * num_images_per_prompt, 1
)
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
torch.cuda.empty_cache()
if self.enable_autocast_float8_transformer_flag:
origin_weight_dtype = self.transformer.dtype
self.transformer = self.transformer.to(torch.float8_e4m3fn)
# 10. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if i < len(timesteps) * (1 - clip_apply_ratio) and clip_encoder_hidden_states_input is not None:
clip_encoder_hidden_states_actual_input = torch.zeros_like(clip_encoder_hidden_states_input)
clip_attention_mask_actual_input = torch.zeros_like(clip_attention_mask_input)
else:
clip_encoder_hidden_states_actual_input = clip_encoder_hidden_states_input
clip_attention_mask_actual_input = clip_attention_mask_input
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
dtype=latent_model_input.dtype
)
# predict the noise residual
noise_pred = self.transformer(
latent_model_input,
t_expand,
encoder_hidden_states=prompt_embeds,
text_embedding_mask=prompt_attention_mask,
encoder_hidden_states_t5=prompt_embeds_2,
text_embedding_mask_t5=prompt_attention_mask_2,
image_meta_size=add_time_ids,
style=style,
image_rotary_emb=image_rotary_emb,
inpaint_latents=inpaint_latents,
clip_encoder_hidden_states=clip_encoder_hidden_states_actual_input,
clip_attention_mask=clip_attention_mask_actual_input,
return_dict=False,
)[0]
if noise_pred.size()[1] != self.vae.config.latent_channels:
noise_pred, _ = noise_pred.chunk(2, dim=1)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if num_channels_transformer == 4:
init_latents_proper = image_latents
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
negative_prompt_embeds_2 = callback_outputs.pop(
"negative_prompt_embeds_2", negative_prompt_embeds_2
)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if comfyui_progressbar:
pbar.update(1)
if self.enable_autocast_float8_transformer_flag:
self.transformer = self.transformer.to("cpu", origin_weight_dtype)
torch.cuda.empty_cache()
# Post-processing
video = self.decode_latents(latents)
# Convert to tensor
if output_type == "latent":
video = torch.from_numpy(video)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return video
return EasyAnimatePipelineOutput(videos=video) |