Spaces:
Sleeping
Sleeping
import cv2 | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
# Load the pre-trained Haar Cascade face detector | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
def detect_faces(frame): | |
""" | |
Detect faces in the frame. | |
Returns the frame with bounding boxes drawn around detected faces. | |
""" | |
# Convert the frame to grayscale (Haar Cascade works on grayscale images) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
# Detect faces in the image | |
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) | |
# Draw rectangles around the faces | |
for (x, y, w, h) in faces: | |
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
return frame | |
# Streamlit UI for the app | |
st.title("Real-Time Face Detection") | |
# Capture the video from the webcam | |
camera = st.camera_input("Capture a photo") | |
# Process the webcam image if available | |
if camera: | |
# Convert the camera image into a numpy array | |
img = Image.open(camera) | |
img_array = np.array(img) | |
# Convert the image to a format OpenCV can process (BGR) | |
img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) | |
# Detect faces in the image | |
result_frame = detect_faces(img_bgr) | |
# Convert result frame back to RGB (for displaying in Streamlit) | |
result_frame_rgb = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) | |
# Display the result in Streamlit | |
st.image(result_frame_rgb, caption="Detected Faces", use_column_width=True) | |