import cv2 import streamlit as st import numpy as np from PIL import Image # Load the pre-trained Haar Cascade face detector face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') def detect_faces(frame): """ Detect faces in the frame. Returns the frame with bounding boxes drawn around detected faces. """ # Convert the frame to grayscale (Haar Cascade works on grayscale images) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # Draw rectangles around the faces for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) return frame # Streamlit UI for the app st.title("Real-Time Face Detection") # Capture the video from the webcam camera = st.camera_input("Capture a photo") # Process the webcam image if available if camera: # Convert the camera image into a numpy array img = Image.open(camera) img_array = np.array(img) # Convert the image to a format OpenCV can process (BGR) img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) # Detect faces in the image result_frame = detect_faces(img_bgr) # Convert result frame back to RGB (for displaying in Streamlit) result_frame_rgb = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) # Display the result in Streamlit st.image(result_frame_rgb, caption="Detected Faces", use_column_width=True)