File size: 3,578 Bytes
73cab25
ba42b9f
 
 
 
73cab25
ba42b9f
 
 
 
 
 
 
 
1c411ce
df4dfab
e1cd816
ba42b9f
9beef86
 
 
223eb95
9beef86
 
 
aa1c032
 
9beef86
aa1c032
9beef86
33a5bcf
 
 
 
 
 
 
 
aa1c032
 
 
9beef86
 
 
 
928f50f
9beef86
742aafd
928f50f
 
 
 
 
9beef86
928f50f
 
 
742aafd
928f50f
742aafd
82be3cc
 
 
 
aa1c032
82be3cc
 
 
 
 
 
 
b1ac211
82be3cc
 
 
73cab25
50f2862
928f50f
5914cfd
 
928f50f
 
 
 
5914cfd
 
 
 
5549008
5914cfd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
import soundfile as sf
import os
import numpy as np

import os
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
from collections import Counter

device = torch.device("cpu")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
model_path = "dysarthria_classifier12.pth"
# model_path = '/home/user/app/dysarthria_classifier12.pth'
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

# if os.path.exists(model_path):
#     print(f"Loading saved model {model_path}")
#     model.load_state_dict(torch.load(model_path))


title = "Upload an mp3 file for parkinsons detection! (Thai Language)"
description = """
The model was trained on Thai audio recordings with the following sentences: \n
ชาวไร่ตัดต้นสนทำท่อนซุง\n
ปูม้าวิ่งไปมาบนใบไม้ (เน้นใช้ริมฝีปาก)\n
อีกาคอยคาบงูคาบไก่ (เน้นใช้เพดานปาก)\n
เพียงแค่ฝนตกลงที่หน้าต่างในบางครา\n
“อาาาาาาาาาาา”\n
“อีีีีีีีีี”\n
“อาาาา” (ดังขึ้นเรื่อยๆ)\n
“อาา อาาา อาาาาา”\n
<img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
"""





def predict(file_upload,microphone_path):
    max_length = 100000
    file_path = filepath(file_upload)
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"
    if(microphone is not None):
        file_path = filepath(microphone)
    if(file_upload is not None):
        file_path = filepath(microphone)
    model.eval()
    with torch.no_grad():
        wav_data, _ = sf.read(file_path.name)
        inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)

        input_values = inputs.input_values.squeeze(0)  
        if max_length - input_values.shape[-1] > 0:
            input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
        else:
            input_values = input_values[:max_length]
        input_values = input_values.unsqueeze(0).to(device)
        inputs = {"input_values": input_values}

        logits = model(**inputs).logits
        logits = logits.squeeze()
        predicted_class_id = torch.argmax(logits, dim=-1).item()

    return predicted_class_id
    
gr.Interface(
    fn=predict,
    inputs=[
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
    ],
    outputs="text",
    title=title,
    description=description,
).launch()

# iface = gr.Interface(fn=predict, inputs="file", outputs="text")
# iface.launch()