Spaces:
Runtime error
Runtime error
File size: 5,723 Bytes
8186dd3 290a376 8186dd3 74b9e57 8186dd3 290a376 4a89577 290a376 8186dd3 290a376 8186dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#!/usr/bin/env python3
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
import gradio as gr
METRICS_TO_NOT_DISPLAY = set(["ser"])
NO_LANGUAGE_MODELS = []
api = HfApi()
models = api.list_models(filter="robust-speech-event")
model_ids = [x.modelId for x in models]
def get_metadatas(model_ids):
metadatas = {}
for model_id in model_ids:
readme_path = hf_hub_download(model_id, filename="README.md")
metadatas[model_id] = metadata_load(readme_path)
return metadatas
def get_model_results_and_language_map(metadatas):
all_model_results = {}
# model_id
# - dataset
# - metric
model_language_map = {}
# model_id: lang
for model_id, metadata in metadatas.items():
if "language" not in metadata:
NO_LANGUAGE_MODELS.append(model_id)
continue
lang = metadata["language"]
model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
if "model-index" not in metadata:
all_model_results[model_id] = None
else:
result_dict = {}
for result in metadata["model-index"][0]["results"]:
dataset = result["dataset"]["type"]
metrics = [x["type"] for x in result["metrics"]]
values = [
x["value"] if "value" in x else None for x in result["metrics"]
]
result_dict[dataset] = {k: v for k, v in zip(metrics, values)}
all_model_results[model_id] = result_dict
return all_model_results, model_language_map
def get_datasets_metrics_langs(all_model_results, model_language_map):
# get all datasets
all_datasets = set(
sum([list(x.keys()) for x in all_model_results.values() if x is not None], [])
)
all_langs = set(sum(list(model_language_map.values()), []))
# get all metrics
all_metrics = []
for metric_result in all_model_results.values():
if metric_result is not None:
all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])
all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY
return all_datasets, all_langs, all_metrics
# get results table (one table for each dataset, metric)
def retrieve_dataframes(
all_model_results, model_language_map, all_datasets, all_langs, all_metrics
):
all_datasets_results = {}
pandas_datasets = {}
for dataset in all_datasets:
all_datasets_results[dataset] = {}
pandas_datasets[dataset] = {}
for metric in all_metrics:
all_datasets_results[dataset][metric] = {}
pandas_datasets[dataset][metric] = {}
for lang in all_langs:
all_datasets_results[dataset][metric][lang] = {}
results = {}
for model_id, model_result in all_model_results.items():
is_relevant = (
lang in model_language_map[model_id]
and model_result is not None
and dataset in model_result
and metric in model_result[dataset]
)
if not is_relevant:
continue
result = model_result[dataset][metric]
if isinstance(result, str):
"".join(result.split("%"))
try:
result = float(result)
except: # noqa: E722
result = None
elif isinstance(result, float) and result < 1.0:
# assuming that WER is given in 0.13 format
result = 100 * result
results[model_id] = round(result, 2) if result is not None else None
results = dict(
sorted(results.items(), key=lambda item: (item[1] is None, item[1]))
)
all_datasets_results[dataset][metric][lang] = [
f"{v} : {k}" for k, v in results.items()
]
data = all_datasets_results[dataset][metric]
data_frame = pd.DataFrame.from_dict(data, orient="index")
data_frame.fillna("", inplace=True)
data_frame = data_frame.sort_index().transpose()
pandas_datasets[dataset][metric] = data_frame
return pandas_datasets
# 1. Retrieve metadatas
metadatas = get_metadatas(model_ids)
# 2. Parse to results
all_model_results, model_language_map = get_model_results_and_language_map(metadatas)
# 3. Get datasets and langs
all_datasets, all_langs, all_metrics = get_datasets_metrics_langs(
all_model_results, model_language_map
)
# 4. Get dataframes
all_dataframes = retrieve_dataframes(
all_model_results, model_language_map, all_datasets, all_langs, all_metrics
)
def select(dataset, metric):
return all_dataframes[dataset][metric]
iface = gr.Interface(
select,
[
gr.inputs.Dropdown(
list(all_datasets),
type="value",
default="mozilla-foundation/common_voice_7_0",
label="dataset",
),
gr.inputs.Dropdown(
list(all_metrics), type="value", default="wer", label="metric"
),
],
gr.outputs.Dataframe(
headers=None,
max_rows=3,
max_cols=10,
overflow_row_behaviour="paginate",
type="pandas",
label=None,
),
examples=[
["mozilla-foundation/common_voice_7_0", "wer"],
["mozilla-foundation/common_voice_7_0", "cer"],
],
layout="vertical",
)
iface.launch()
|