File size: 5,723 Bytes
8186dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290a376
8186dd3
 
 
 
 
74b9e57
8186dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290a376
 
 
4a89577
290a376
 
 
 
8186dd3
 
 
 
290a376
8186dd3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

import pandas as pd
import gradio as gr

METRICS_TO_NOT_DISPLAY = set(["ser"])
NO_LANGUAGE_MODELS = []

api = HfApi()
models = api.list_models(filter="robust-speech-event")
model_ids = [x.modelId for x in models]


def get_metadatas(model_ids):
    metadatas = {}
    for model_id in model_ids:
        readme_path = hf_hub_download(model_id, filename="README.md")
        metadatas[model_id] = metadata_load(readme_path)
    return metadatas


def get_model_results_and_language_map(metadatas):
    all_model_results = {}
    # model_id
    #  - dataset
    #     - metric
    model_language_map = {}
    # model_id: lang
    for model_id, metadata in metadatas.items():
        if "language" not in metadata:
            NO_LANGUAGE_MODELS.append(model_id)
            continue
        lang = metadata["language"]
        model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
        if "model-index" not in metadata:
            all_model_results[model_id] = None
        else:
            result_dict = {}
            for result in metadata["model-index"][0]["results"]:
                dataset = result["dataset"]["type"]
                metrics = [x["type"] for x in result["metrics"]]
                values = [
                    x["value"] if "value" in x else None for x in result["metrics"]
                ]
                result_dict[dataset] = {k: v for k, v in zip(metrics, values)}

        all_model_results[model_id] = result_dict
    return all_model_results, model_language_map


def get_datasets_metrics_langs(all_model_results, model_language_map):
    # get all datasets
    all_datasets = set(
        sum([list(x.keys()) for x in all_model_results.values() if x is not None], [])
    )
    all_langs = set(sum(list(model_language_map.values()), []))

    # get all metrics
    all_metrics = []
    for metric_result in all_model_results.values():
        if metric_result is not None:
            all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])

    all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY
    return all_datasets, all_langs, all_metrics


# get results table (one table for each dataset, metric)
def retrieve_dataframes(
    all_model_results, model_language_map, all_datasets, all_langs, all_metrics
):
    all_datasets_results = {}
    pandas_datasets = {}
    for dataset in all_datasets:
        all_datasets_results[dataset] = {}
        pandas_datasets[dataset] = {}
        for metric in all_metrics:
            all_datasets_results[dataset][metric] = {}
            pandas_datasets[dataset][metric] = {}
            for lang in all_langs:
                all_datasets_results[dataset][metric][lang] = {}
                results = {}
                for model_id, model_result in all_model_results.items():
                    is_relevant = (
                        lang in model_language_map[model_id]
                        and model_result is not None
                        and dataset in model_result
                        and metric in model_result[dataset]
                    )
                    if not is_relevant:
                        continue

                    result = model_result[dataset][metric]
                    if isinstance(result, str):
                        "".join(result.split("%"))
                        try:
                            result = float(result)
                        except:  # noqa: E722
                            result = None
                    elif isinstance(result, float) and result < 1.0:
                        # assuming that WER is given in 0.13 format
                        result = 100 * result
                    results[model_id] = round(result, 2) if result is not None else None

                results = dict(
                    sorted(results.items(), key=lambda item: (item[1] is None, item[1]))
                )
                all_datasets_results[dataset][metric][lang] = [
                    f"{v} : {k}" for k, v in results.items()
                ]

            data = all_datasets_results[dataset][metric]
            data_frame = pd.DataFrame.from_dict(data, orient="index")
            data_frame.fillna("", inplace=True)
            data_frame = data_frame.sort_index().transpose()
            pandas_datasets[dataset][metric] = data_frame
    return pandas_datasets


# 1. Retrieve metadatas
metadatas = get_metadatas(model_ids)

# 2. Parse to results
all_model_results, model_language_map = get_model_results_and_language_map(metadatas)

# 3. Get datasets and langs
all_datasets, all_langs, all_metrics = get_datasets_metrics_langs(
    all_model_results, model_language_map
)

# 4. Get dataframes
all_dataframes = retrieve_dataframes(
    all_model_results, model_language_map, all_datasets, all_langs, all_metrics
)


def select(dataset, metric):
    return all_dataframes[dataset][metric]


iface = gr.Interface(
    select,
    [
        gr.inputs.Dropdown(
            list(all_datasets),
            type="value",
            default="mozilla-foundation/common_voice_7_0",
            label="dataset",
        ),
        gr.inputs.Dropdown(
            list(all_metrics), type="value", default="wer", label="metric"
        ),
    ],
    gr.outputs.Dataframe(
        headers=None,
        max_rows=3,
        max_cols=10,
        overflow_row_behaviour="paginate",
        type="pandas",
        label=None,
    ),
    examples=[
        ["mozilla-foundation/common_voice_7_0", "wer"],
        ["mozilla-foundation/common_voice_7_0", "cer"],
    ],
    layout="vertical",
)

iface.launch()