Spaces:
Runtime error
Runtime error
Commit
·
8186dd3
1
Parent(s):
ef16ac0
up
Browse files- app.py +164 -0
- load_all_model_info.py +0 -93
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
3 |
+
from huggingface_hub.repocard import metadata_load
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
METRICS_TO_NOT_DISPLAY = set(["ser"])
|
9 |
+
NO_LANGUAGE_MODELS = []
|
10 |
+
|
11 |
+
api = HfApi()
|
12 |
+
models = api.list_models(filter="robust-speech-event")
|
13 |
+
model_ids = [x.modelId for x in models]
|
14 |
+
|
15 |
+
|
16 |
+
def get_metadatas(model_ids):
|
17 |
+
metadatas = {}
|
18 |
+
for model_id in model_ids:
|
19 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
20 |
+
metadatas[model_id] = metadata_load(readme_path)
|
21 |
+
return metadatas
|
22 |
+
|
23 |
+
|
24 |
+
def get_model_results_and_language_map(metadatas):
|
25 |
+
all_model_results = {}
|
26 |
+
# model_id
|
27 |
+
# - dataset
|
28 |
+
# - metric
|
29 |
+
model_language_map = {}
|
30 |
+
# model_id: lang
|
31 |
+
for model_id, metadata in metadatas.items():
|
32 |
+
if "language" not in metadata:
|
33 |
+
NO_LANGUAGE_MODELS.append(model_id)
|
34 |
+
continue
|
35 |
+
lang = metadata["language"]
|
36 |
+
model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
|
37 |
+
if "model-index" not in metadata:
|
38 |
+
all_model_results[model_id] = None
|
39 |
+
else:
|
40 |
+
result_dict = {}
|
41 |
+
for result in metadata["model-index"][0]["results"]:
|
42 |
+
dataset = result["dataset"]["type"]
|
43 |
+
metrics = [x["type"] for x in result["metrics"]]
|
44 |
+
values = [
|
45 |
+
x["value"] if "value" in x else None for x in result["metrics"]
|
46 |
+
]
|
47 |
+
result_dict[dataset] = {k: v for k, v in zip(metrics, values)}
|
48 |
+
|
49 |
+
all_model_results[model_id] = result_dict
|
50 |
+
return all_model_results, model_language_map
|
51 |
+
|
52 |
+
|
53 |
+
def get_datasets_metrics_langs(all_model_results, model_language_map):
|
54 |
+
# get all datasets
|
55 |
+
all_datasets = set(
|
56 |
+
sum([list(x.keys()) for x in all_model_results.values() if x is not None], [])
|
57 |
+
)
|
58 |
+
all_langs = set(sum(list(model_language_map.values()), []))
|
59 |
+
|
60 |
+
# get all metrics
|
61 |
+
all_metrics = []
|
62 |
+
for metric_result in all_model_results.values():
|
63 |
+
if metric_result is not None:
|
64 |
+
all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])
|
65 |
+
|
66 |
+
all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY
|
67 |
+
return all_datasets, all_langs, all_metrics
|
68 |
+
|
69 |
+
|
70 |
+
# get results table (one table for each dataset, metric)
|
71 |
+
def retrieve_dataframes(
|
72 |
+
all_model_results, model_language_map, all_datasets, all_langs, all_metrics
|
73 |
+
):
|
74 |
+
all_datasets_results = {}
|
75 |
+
pandas_datasets = {}
|
76 |
+
for dataset in all_datasets:
|
77 |
+
all_datasets_results[dataset] = {}
|
78 |
+
pandas_datasets[dataset] = {}
|
79 |
+
for metric in all_metrics:
|
80 |
+
all_datasets_results[dataset][metric] = {}
|
81 |
+
pandas_datasets[dataset][metric] = {}
|
82 |
+
for lang in all_langs:
|
83 |
+
all_datasets_results[dataset][metric][lang] = {}
|
84 |
+
results = {}
|
85 |
+
for model_id, model_result in all_model_results.items():
|
86 |
+
is_relevant = (
|
87 |
+
lang in model_language_map[model_id]
|
88 |
+
and model_result is not None
|
89 |
+
and dataset in model_result
|
90 |
+
and metric in model_result[dataset]
|
91 |
+
)
|
92 |
+
if not is_relevant:
|
93 |
+
continue
|
94 |
+
|
95 |
+
result = model_result[dataset][metric]
|
96 |
+
if isinstance(result, str):
|
97 |
+
"".join(result.split("%"))
|
98 |
+
try:
|
99 |
+
result = float(result)
|
100 |
+
except: # noqa: E722
|
101 |
+
result = None
|
102 |
+
elif isinstance(result, float) and result < 1.0:
|
103 |
+
# assuming that WER is given in 0.13 format
|
104 |
+
result = 100 * result
|
105 |
+
results[model_id] = round(result, 2) if result is not None else None
|
106 |
+
|
107 |
+
results = dict(
|
108 |
+
sorted(results.items(), key=lambda item: (item[1] is None, item[1]))
|
109 |
+
)
|
110 |
+
all_datasets_results[dataset][metric][lang] = [
|
111 |
+
f"{k}: {v}" for k, v in results.items()
|
112 |
+
]
|
113 |
+
|
114 |
+
data = all_datasets_results[dataset][metric]
|
115 |
+
data_frame = pd.DataFrame.from_dict(data, orient="index")
|
116 |
+
data_frame.fillna("", inplace=True)
|
117 |
+
pandas_datasets[dataset][metric] = data_frame
|
118 |
+
return pandas_datasets
|
119 |
+
|
120 |
+
|
121 |
+
# 1. Retrieve metadatas
|
122 |
+
metadatas = get_metadatas(model_ids)
|
123 |
+
|
124 |
+
# 2. Parse to results
|
125 |
+
all_model_results, model_language_map = get_model_results_and_language_map(metadatas)
|
126 |
+
|
127 |
+
# 3. Get datasets and langs
|
128 |
+
all_datasets, all_langs, all_metrics = get_datasets_metrics_langs(
|
129 |
+
all_model_results, model_language_map
|
130 |
+
)
|
131 |
+
|
132 |
+
# 4. Get dataframes
|
133 |
+
all_dataframes = retrieve_dataframes(
|
134 |
+
all_model_results, model_language_map, all_datasets, all_langs, all_metrics
|
135 |
+
)
|
136 |
+
|
137 |
+
|
138 |
+
def select(dataset, metric):
|
139 |
+
return all_dataframes[dataset][metric]
|
140 |
+
|
141 |
+
|
142 |
+
iface = gr.Interface(
|
143 |
+
select,
|
144 |
+
[
|
145 |
+
gr.inputs.Dropdown(
|
146 |
+
list(all_datasets),
|
147 |
+
type="value",
|
148 |
+
default="mozilla-foundation/common_voice_7_0",
|
149 |
+
label="dataset",
|
150 |
+
),
|
151 |
+
gr.inputs.Dropdown(
|
152 |
+
list(all_metrics), type="value", default="wer", label="metric"
|
153 |
+
),
|
154 |
+
],
|
155 |
+
"pandas",
|
156 |
+
examples=[
|
157 |
+
["mozilla-foundation/common_voice_7_0", "wer"],
|
158 |
+
["mozilla-foundation/common_voice_7_0", "cer"],
|
159 |
+
],
|
160 |
+
)
|
161 |
+
|
162 |
+
iface.test_launch()
|
163 |
+
|
164 |
+
iface.launch()
|
load_all_model_info.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
from huggingface_hub import HfApi, hf_hub_download
|
3 |
-
from huggingface_hub.repocard import metadata_load
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
METRICS_TO_NOT_DISPLAY = set(["ser"])
|
8 |
-
NO_LANGUAGE_MODELS = []
|
9 |
-
|
10 |
-
api = HfApi()
|
11 |
-
models = api.list_models(filter="robust-speech-event")
|
12 |
-
|
13 |
-
model_ids = [x.modelId for x in models]
|
14 |
-
|
15 |
-
metadatas = {}
|
16 |
-
|
17 |
-
for model_id in model_ids:
|
18 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
19 |
-
metadatas[model_id] = metadata_load(readme_path)
|
20 |
-
|
21 |
-
|
22 |
-
all_model_results = {}
|
23 |
-
# model_id
|
24 |
-
# - dataset
|
25 |
-
# - metric
|
26 |
-
model_language_map = {}
|
27 |
-
# model_id: lang
|
28 |
-
for model_id, metadata in metadatas.items():
|
29 |
-
if "language" not in metadata:
|
30 |
-
NO_LANGUAGE_MODELS.append(model_id)
|
31 |
-
continue
|
32 |
-
lang = metadata["language"]
|
33 |
-
model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
|
34 |
-
if "model-index" not in metadata:
|
35 |
-
all_model_results[model_id] = None
|
36 |
-
else:
|
37 |
-
result_dict = {}
|
38 |
-
for result in metadata["model-index"][0]["results"]:
|
39 |
-
dataset = result["dataset"]["type"]
|
40 |
-
metrics = [x["type"] for x in result["metrics"]]
|
41 |
-
values = [x["value"] if "value" in x else None for x in result["metrics"]]
|
42 |
-
result_dict[dataset] = {k: v for k, v in zip(metrics, values)}
|
43 |
-
|
44 |
-
all_model_results[model_id] = result_dict
|
45 |
-
|
46 |
-
# get all datasets
|
47 |
-
all_datasets = set(sum([list(x.keys()) for x in all_model_results.values() if x is not None], []))
|
48 |
-
all_langs = set(sum(list(model_language_map.values()), []))
|
49 |
-
|
50 |
-
# get all metrics
|
51 |
-
all_metrics = []
|
52 |
-
for metric_result in all_model_results.values():
|
53 |
-
if metric_result is not None:
|
54 |
-
all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])
|
55 |
-
|
56 |
-
all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY
|
57 |
-
|
58 |
-
# get results table (one table for each dataset, metric)
|
59 |
-
all_datasets_results = {}
|
60 |
-
pandas_datasets = {}
|
61 |
-
for dataset in all_datasets:
|
62 |
-
all_datasets_results[dataset] = {}
|
63 |
-
pandas_datasets[dataset] = {}
|
64 |
-
for metric in all_metrics:
|
65 |
-
all_datasets_results[dataset][metric] = {}
|
66 |
-
pandas_datasets[dataset][metric] = {}
|
67 |
-
for lang in all_langs:
|
68 |
-
all_datasets_results[dataset][metric][lang] = {}
|
69 |
-
results = {}
|
70 |
-
for model_id, model_result in all_model_results.items():
|
71 |
-
is_relevant = lang in model_language_map[model_id] and model_result is not None and dataset in model_result and metric in model_result[dataset]
|
72 |
-
if not is_relevant:
|
73 |
-
continue
|
74 |
-
|
75 |
-
result = model_result[dataset][metric]
|
76 |
-
if isinstance(result, str):
|
77 |
-
"".join(result.split("%"))
|
78 |
-
try:
|
79 |
-
result = float(result)
|
80 |
-
except:
|
81 |
-
result = None
|
82 |
-
elif isinstance(result, float) and result < 1.0:
|
83 |
-
# assuming that WER is given in 0.13 format
|
84 |
-
result = 100 * result
|
85 |
-
results[model_id] = round(result, 2) if result is not None else None
|
86 |
-
|
87 |
-
results = dict(sorted(results.items(), key=lambda item: (item[1] is None, item[1])))
|
88 |
-
all_datasets_results[dataset][metric][lang] = [f"{k}: {v}" for k, v in results.items()]
|
89 |
-
|
90 |
-
data = all_datasets_results[dataset][metric]
|
91 |
-
data_frame = pd.DataFrame.from_dict(data, orient="index")
|
92 |
-
data_frame.fillna("", inplace=True)
|
93 |
-
pandas_datasets[dataset][metric] = data_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|