Spaces:
Sleeping
Sleeping
import streamlit as st | |
# Page configuration | |
st.set_page_config( | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# Custom CSS for better styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.sub-title { | |
font-size: 24px; | |
color: #4A90E2; | |
margin-top: 20px; | |
} | |
.section { | |
background-color: #f9f9f9; | |
padding: 15px; | |
border-radius: 10px; | |
margin-top: 20px; | |
} | |
.section h2 { | |
font-size: 22px; | |
color: #4A90E2; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
.link { | |
color: #4A90E2; | |
text-decoration: none; | |
} | |
.benchmark-table { | |
width: 100%; | |
border-collapse: collapse; | |
margin-top: 20px; | |
} | |
.benchmark-table th, .benchmark-table td { | |
border: 1px solid #ddd; | |
padding: 8px; | |
text-align: left; | |
} | |
.benchmark-table th { | |
background-color: #4A90E2; | |
color: white; | |
} | |
.benchmark-table td { | |
background-color: #f2f2f2; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Title | |
st.markdown('<div class="main-title">Introduction to Longformer for Token & Sequence Classification</div>', unsafe_allow_html=True) | |
# Subtitle | |
st.markdown(""" | |
<div class="section"> | |
<p>Longformer is a transformer-based model designed to handle long documents by leveraging an attention mechanism that scales linearly with the length of the document. This makes it highly effective for tasks such as token classification and sequence classification, especially when dealing with lengthy text inputs.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Tabs for Longformer Annotators | |
tab1, tab2, tab3= st.tabs(["Longformer For Token Classification", "Longformer For Sequence Classification", "Longformer For Question Answering"]) | |
# Tab 1: LongformerForTokenClassification | |
with tab1: | |
st.markdown(""" | |
<div class="section"> | |
<h2>Longformer for Token Classification</h2> | |
<p><strong>Token Classification</strong> involves assigning labels to individual tokens (words or subwords) within a sentence. This is essential for tasks like Named Entity Recognition (NER), where each token is classified as a specific entity such as a person, organization, or location.</p> | |
<p>Longformer is particularly effective for token classification tasks due to its ability to handle long contexts and capture dependencies over long spans of text.</p> | |
<p>Using Longformer for token classification enables:</p> | |
<ul> | |
<li><strong>Precise NER:</strong> Extract entities from lengthy documents with high accuracy.</li> | |
<li><strong>Efficient Contextual Understanding:</strong> Leverage Longformer's attention mechanism to model long-range dependencies.</li> | |
<li><strong>Scalability:</strong> Process large documents efficiently using Spark NLP.</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Implementation Section | |
st.markdown('<div class="sub-title">How to Use Longformer for Token Classification in Spark NLP</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Below is an example of how to set up a pipeline in Spark NLP using the Longformer model for token classification, specifically for Named Entity Recognition (NER).</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.code(''' | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
from pyspark.sql.functions import col, expr | |
document_assembler = DocumentAssembler() \\ | |
.setInputCol('text') \\ | |
.setOutputCol('document') | |
tokenizer = Tokenizer() \\ | |
.setInputCols(['document']) \\ | |
.setOutputCol('token') | |
tokenClassifier = LongformerForTokenClassification \\ | |
.pretrained('longformer_base_token_classifier_conll03', 'en') \\ | |
.setInputCols(['token', 'document']) \\ | |
.setOutputCol('ner') \\ | |
.setCaseSensitive(True) \\ | |
.setMaxSentenceLength(512) | |
ner_converter = NerConverter() \\ | |
.setInputCols(['document', 'token', 'ner']) \\ | |
.setOutputCol('entities') | |
pipeline = Pipeline(stages=[ | |
document_assembler, | |
tokenizer, | |
tokenClassifier, | |
ner_converter | |
]) | |
text = "Facebook is a social networking service launched as TheFacebook on February 4, 2004. It was founded by Mark Zuckerberg with his college roommates and fellow Harvard University students Eduardo Saverin, Andrew McCollum, Dustin Moskovitz and Chris Hughes. The website's membership was initially limited by the founders to Harvard students, but was expanded to other colleges in the Boston area, the Ivy League, and gradually most universities in the United States and Canada." | |
example = spark.createDataFrame([[text]]).toDF("text") | |
result = pipeline.fit(example).transform(example) | |
result.select( | |
expr("explode(entities) as ner_chunk") | |
).select( | |
col("ner_chunk.result").alias("chunk"), | |
col("ner_chunk.metadata.entity").alias("ner_label") | |
).show(truncate=False) | |
''', language='python') | |
# Example Output | |
st.text(""" | |
+------------------+---------+ | |
|chunk |ner_label| | |
+------------------+---------+ | |
|Mark Zuckerberg |PER | | |
|Harvard University|ORG | | |
|Eduardo Saverin |PER | | |
|Andrew McCollum |PER | | |
|Dustin Moskovitz |PER | | |
|Chris Hughes |PER | | |
|Harvard |ORG | | |
|Boston |LOC | | |
|Ivy |ORG | | |
|League |ORG | | |
|United |LOC | | |
|States |LOC | | |
|Canada |LOC | | |
+------------------+---------+ | |
""") | |
# Model Info Section | |
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Spark NLP offers various Longformer models tailored for token classification tasks. Selecting the appropriate model can significantly impact performance.</p> | |
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForTokenClassification" target="_blank">Spark NLP Models Hub</a> to find the one that fits your needs.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Tab 2: LongformerForSequenceClassification | |
with tab2: | |
st.markdown(""" | |
<div class="section"> | |
<h2>Longformer for Sequence Classification</h2> | |
<p><strong>Sequence Classification</strong> involves assigning a label to an entire sequence of text, such as determining the sentiment of a review or categorizing a document into topics. Longformer’s ability to model long-range dependencies is particularly beneficial for sequence classification tasks.</p> | |
<p>Using Longformer for sequence classification enables:</p> | |
<ul> | |
<li><strong>Accurate Sentiment Analysis:</strong> Determine the sentiment of long text sequences.</li> | |
<li><strong>Effective Document Classification:</strong> Categorize lengthy documents based on their content.</li> | |
<li><strong>Robust Performance:</strong> Benefit from Longformer’s attention mechanism for improved classification accuracy.</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Implementation Section | |
st.markdown('<div class="sub-title">How to Use Longformer for Sequence Classification in Spark NLP</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for sequence classification, particularly for sentiment analysis of movie reviews.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.code(''' | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
document_assembler = DocumentAssembler() \\ | |
.setInputCol('text') \\ | |
.setOutputCol('document') | |
tokenizer = Tokenizer() \\ | |
.setInputCols(['document']) \\ | |
.setOutputCol('token') | |
sequenceClassifier = LongformerForSequenceClassification \\ | |
.pretrained('longformer_base_sequence_classifier_imdb', 'en') \\ | |
.setInputCols(['token', 'document']) \\ | |
.setOutputCol('class') \\ | |
.setCaseSensitive(False) \\ | |
.setMaxSentenceLength(1024) | |
pipeline = Pipeline(stages=[ | |
document_assembler, | |
tokenizer, | |
sequenceClassifier | |
]) | |
example = spark.createDataFrame([['I really liked that movie!']]).toDF("text") | |
result = pipeline.fit(example).transform(example) | |
result.select('document.result','class.result').show() | |
''', language='python') | |
# Example Output | |
st.text(""" | |
+--------------------+------+ | |
| result|result| | |
+--------------------+------+ | |
|[I really liked t...| [pos]| | |
+--------------------+------+ | |
""") | |
# Model Info Section | |
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Various Longformer models are available for sequence classification in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.</p> | |
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForSequenceClassification" target="_blank">Spark NLP Models Hub</a> to find the best fit for your use case.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Tab 3: LongformerForQuestionAnswering | |
with tab3: | |
st.markdown(""" | |
<div class="section"> | |
<h2>Longformer for Question Answering</h2> | |
<p><strong>Question Answering</strong> is the task of identifying the correct answer to a question from a given context or passage. Longformer's ability to process long documents makes it highly suitable for question answering tasks, especially in cases where the context is lengthy.</p> | |
<p>Using Longformer for question answering enables:</p> | |
<ul> | |
<li><strong>Accurate Answer Extraction:</strong> Identify precise answers within long passages.</li> | |
<li><strong>Contextual Understanding:</strong> Benefit from Longformer's global and local attention mechanisms to capture relevant information from context.</li> | |
<li><strong>Scalability:</strong> Efficiently process and handle extensive documents using Spark NLP.</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
# Implementation Section | |
st.markdown('<div class="sub-title">How to Use Longformer for Question Answering in Spark NLP</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for question answering, specifically tailored for SQuAD v2 dataset.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.code(''' | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
documentAssembler = MultiDocumentAssembler() \\ | |
.setInputCols(["question", "context"]) \\ | |
.setOutputCols(["document_question", "document_context"]) | |
spanClassifier = LongformerForQuestionAnswering.pretrained("longformer_base_base_qa_squad2", "en") \\ | |
.setInputCols(["document_question", "document_context"]) \\ | |
.setOutputCol("answer")\\ | |
.setCaseSensitive(True) | |
pipeline = Pipeline(stages=[documentAssembler, spanClassifier]) | |
data = spark.createDataFrame([["What is my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context") | |
result = pipeline.fit(data).transform(data) | |
''', language='python') | |
# Example Output | |
st.text(""" | |
+-------+ | |
| result| | |
+-------+ | |
|[Clara]| | |
+-------+ | |
""") | |
# Model Info Section | |
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>Various Longformer models are available for question answering in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.</p> | |
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForQuestionAnswering" target="_blank">Spark NLP Models Hub</a> to find the best fit for your use case.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Footer | |
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<ul> | |
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li> | |
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li> | |
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li> | |
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li> | |
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('<div class="sub-title">Quick Links</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<ul> | |
<li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started</a></li> | |
<li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li> | |
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li> | |
<li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li> | |
</ul> | |
</div> | |
""", unsafe_allow_html=True) | |