Spaces:
Sleeping
Sleeping
File size: 14,990 Bytes
b6d9308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import streamlit as st
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
.benchmark-table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
}
.benchmark-table th, .benchmark-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.benchmark-table th {
background-color: #4A90E2;
color: white;
}
.benchmark-table td {
background-color: #f2f2f2;
}
</style>
""", unsafe_allow_html=True)
# Title
st.markdown('<div class="main-title">Introduction to Longformer for Token & Sequence Classification</div>', unsafe_allow_html=True)
# Subtitle
st.markdown("""
<div class="section">
<p>Longformer is a transformer-based model designed to handle long documents by leveraging an attention mechanism that scales linearly with the length of the document. This makes it highly effective for tasks such as token classification and sequence classification, especially when dealing with lengthy text inputs.</p>
</div>
""", unsafe_allow_html=True)
# Tabs for Longformer Annotators
tab1, tab2, tab3= st.tabs(["Longformer For Token Classification", "Longformer For Sequence Classification", "Longformer For Question Answering"])
# Tab 1: LongformerForTokenClassification
with tab1:
st.markdown("""
<div class="section">
<h2>Longformer for Token Classification</h2>
<p><strong>Token Classification</strong> involves assigning labels to individual tokens (words or subwords) within a sentence. This is essential for tasks like Named Entity Recognition (NER), where each token is classified as a specific entity such as a person, organization, or location.</p>
<p>Longformer is particularly effective for token classification tasks due to its ability to handle long contexts and capture dependencies over long spans of text.</p>
<p>Using Longformer for token classification enables:</p>
<ul>
<li><strong>Precise NER:</strong> Extract entities from lengthy documents with high accuracy.</li>
<li><strong>Efficient Contextual Understanding:</strong> Leverage Longformer's attention mechanism to model long-range dependencies.</li>
<li><strong>Scalability:</strong> Process large documents efficiently using Spark NLP.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Implementation Section
st.markdown('<div class="sub-title">How to Use Longformer for Token Classification in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Below is an example of how to set up a pipeline in Spark NLP using the Longformer model for token classification, specifically for Named Entity Recognition (NER).</p>
</div>
""", unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import col, expr
document_assembler = DocumentAssembler() \\
.setInputCol('text') \\
.setOutputCol('document')
tokenizer = Tokenizer() \\
.setInputCols(['document']) \\
.setOutputCol('token')
tokenClassifier = LongformerForTokenClassification \\
.pretrained('longformer_base_token_classifier_conll03', 'en') \\
.setInputCols(['token', 'document']) \\
.setOutputCol('ner') \\
.setCaseSensitive(True) \\
.setMaxSentenceLength(512)
ner_converter = NerConverter() \\
.setInputCols(['document', 'token', 'ner']) \\
.setOutputCol('entities')
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
tokenClassifier,
ner_converter
])
text = "Facebook is a social networking service launched as TheFacebook on February 4, 2004. It was founded by Mark Zuckerberg with his college roommates and fellow Harvard University students Eduardo Saverin, Andrew McCollum, Dustin Moskovitz and Chris Hughes. The website's membership was initially limited by the founders to Harvard students, but was expanded to other colleges in the Boston area, the Ivy League, and gradually most universities in the United States and Canada."
example = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(example).transform(example)
result.select(
expr("explode(entities) as ner_chunk")
).select(
col("ner_chunk.result").alias("chunk"),
col("ner_chunk.metadata.entity").alias("ner_label")
).show(truncate=False)
''', language='python')
# Example Output
st.text("""
+------------------+---------+
|chunk |ner_label|
+------------------+---------+
|Mark Zuckerberg |PER |
|Harvard University|ORG |
|Eduardo Saverin |PER |
|Andrew McCollum |PER |
|Dustin Moskovitz |PER |
|Chris Hughes |PER |
|Harvard |ORG |
|Boston |LOC |
|Ivy |ORG |
|League |ORG |
|United |LOC |
|States |LOC |
|Canada |LOC |
+------------------+---------+
""")
# Model Info Section
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Spark NLP offers various Longformer models tailored for token classification tasks. Selecting the appropriate model can significantly impact performance.</p>
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForTokenClassification" target="_blank">Spark NLP Models Hub</a> to find the one that fits your needs.</p>
</div>
""", unsafe_allow_html=True)
# Tab 2: LongformerForSequenceClassification
with tab2:
st.markdown("""
<div class="section">
<h2>Longformer for Sequence Classification</h2>
<p><strong>Sequence Classification</strong> involves assigning a label to an entire sequence of text, such as determining the sentiment of a review or categorizing a document into topics. Longformer’s ability to model long-range dependencies is particularly beneficial for sequence classification tasks.</p>
<p>Using Longformer for sequence classification enables:</p>
<ul>
<li><strong>Accurate Sentiment Analysis:</strong> Determine the sentiment of long text sequences.</li>
<li><strong>Effective Document Classification:</strong> Categorize lengthy documents based on their content.</li>
<li><strong>Robust Performance:</strong> Benefit from Longformer’s attention mechanism for improved classification accuracy.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Implementation Section
st.markdown('<div class="sub-title">How to Use Longformer for Sequence Classification in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for sequence classification, particularly for sentiment analysis of movie reviews.</p>
</div>
""", unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
document_assembler = DocumentAssembler() \\
.setInputCol('text') \\
.setOutputCol('document')
tokenizer = Tokenizer() \\
.setInputCols(['document']) \\
.setOutputCol('token')
sequenceClassifier = LongformerForSequenceClassification \\
.pretrained('longformer_base_sequence_classifier_imdb', 'en') \\
.setInputCols(['token', 'document']) \\
.setOutputCol('class') \\
.setCaseSensitive(False) \\
.setMaxSentenceLength(1024)
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)
result.select('document.result','class.result').show()
''', language='python')
# Example Output
st.text("""
+--------------------+------+
| result|result|
+--------------------+------+
|[I really liked t...| [pos]|
+--------------------+------+
""")
# Model Info Section
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Various Longformer models are available for sequence classification in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.</p>
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForSequenceClassification" target="_blank">Spark NLP Models Hub</a> to find the best fit for your use case.</p>
</div>
""", unsafe_allow_html=True)
# Tab 3: LongformerForQuestionAnswering
with tab3:
st.markdown("""
<div class="section">
<h2>Longformer for Question Answering</h2>
<p><strong>Question Answering</strong> is the task of identifying the correct answer to a question from a given context or passage. Longformer's ability to process long documents makes it highly suitable for question answering tasks, especially in cases where the context is lengthy.</p>
<p>Using Longformer for question answering enables:</p>
<ul>
<li><strong>Accurate Answer Extraction:</strong> Identify precise answers within long passages.</li>
<li><strong>Contextual Understanding:</strong> Benefit from Longformer's global and local attention mechanisms to capture relevant information from context.</li>
<li><strong>Scalability:</strong> Efficiently process and handle extensive documents using Spark NLP.</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Implementation Section
st.markdown('<div class="sub-title">How to Use Longformer for Question Answering in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for question answering, specifically tailored for SQuAD v2 dataset.</p>
</div>
""", unsafe_allow_html=True)
st.code('''
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
documentAssembler = MultiDocumentAssembler() \\
.setInputCols(["question", "context"]) \\
.setOutputCols(["document_question", "document_context"])
spanClassifier = LongformerForQuestionAnswering.pretrained("longformer_base_base_qa_squad2", "en") \\
.setInputCols(["document_question", "document_context"]) \\
.setOutputCol("answer")\\
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])
data = spark.createDataFrame([["What is my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
result = pipeline.fit(data).transform(data)
''', language='python')
# Example Output
st.text("""
+-------+
| result|
+-------+
|[Clara]|
+-------+
""")
# Model Info Section
st.markdown('<div class="sub-title">Choosing the Right Longformer Model</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Various Longformer models are available for question answering in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.</p>
<p>Explore the available models on the <a class="link" href="https://sparknlp.org/models?annotator=LongformerForQuestionAnswering" target="_blank">Spark NLP Models Hub</a> to find the best fit for your use case.</p>
</div>
""", unsafe_allow_html=True)
# Footer
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Quick Links</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li>
<li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
|