File size: 1,587 Bytes
12ba4ff
52f43c9
0dc3afb
52f43c9
 
 
805f6fe
 
 
 
 
 
bb86df1
 
9cf8085
 
 
17ebaff
46cd5e7
b93d861
9cf8085
 
 
46cd5e7
9cf8085
bb86df1
f526817
9cf8085
52f43c9
 
 
9cf8085
52f43c9
9cf8085
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import pickle
import streamlit as st
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)

classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")

# with open('chapter_titles.pkl', 'rb') as file:
#     titles_astiko = pickle.load(file)
# labels1 = ["κληρονομικό", "ακίνητα", "διαζύγιο"]
# labels2 = ["αποδοχή κληρονομιάς", "αποποίηση", "διαθήκη"]
# labels3 = ["μίσθωση", "κυριότητα", "έξωση", "απλήρωτα νοίκια"]


# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
# Load dictionary from the file using pickle
with open('my_dict.pickle', 'rb') as file:
    dictionary = pickle.load(file)

def classify(text,labels):
    output = classifier(text, labels1, multi_label=False)
    
    return output


text = st.text_input('Enter some text:')  # Input field for new text

if text:

    labels = list(dictionary)
    
    output = classify(text,labels)

    labels = list(dictionary[output])

    output2 = classify(text,labels)

    answer = dictionary[output][output2]

    st.text(answer)