Update app.py
Browse files
app.py
CHANGED
@@ -10,22 +10,18 @@ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cp
|
|
10 |
|
11 |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
12 |
|
13 |
-
with open('chapter_titles.pkl', 'rb') as file:
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
|
18 |
|
19 |
|
20 |
def classify(text):
|
21 |
-
output = classifier(text,
|
22 |
-
|
23 |
-
|
24 |
-
return_labels = []
|
25 |
-
st.text(scores)
|
26 |
-
|
27 |
-
st.text(len(scores))
|
28 |
-
st.text(len(labels))
|
29 |
|
30 |
# for i in range(len(scores)):
|
31 |
# if scores[i] > 0.99:
|
@@ -34,9 +30,12 @@ def classify(text):
|
|
34 |
# break
|
35 |
# # output = output[0:10]
|
36 |
# return return_labels
|
37 |
-
return
|
38 |
|
39 |
|
40 |
text = st.text_input('Enter some text:') # Input field for new text
|
41 |
if text:
|
42 |
-
|
|
|
|
|
|
|
|
10 |
|
11 |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
12 |
|
13 |
+
# with open('chapter_titles.pkl', 'rb') as file:
|
14 |
+
# titles_astiko = pickle.load(file)
|
15 |
+
labels1 = ["κληρονομικό", "εμπορικό", "διαζύγιο"]
|
16 |
+
labels2 = ["αποδοχή κληρονομιάς", "κληρονόμοι", "ιδιόγραφη διαθήκη"]
|
17 |
|
18 |
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
|
19 |
|
20 |
|
21 |
def classify(text):
|
22 |
+
output = classifier(text, labels1, multi_label=False)
|
23 |
+
output2 = classifier(text, labels2, multi_label=False)
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# for i in range(len(scores)):
|
27 |
# if scores[i] > 0.99:
|
|
|
30 |
# break
|
31 |
# # output = output[0:10]
|
32 |
# return return_labels
|
33 |
+
return output, output2
|
34 |
|
35 |
|
36 |
text = st.text_input('Enter some text:') # Input field for new text
|
37 |
if text:
|
38 |
+
output1 = classify(text)
|
39 |
+
output2 = classify(text)
|
40 |
+
st.text(output1)
|
41 |
+
st.text(output1)
|