File size: 994 Bytes
12ba4ff
52f43c9
0dc3afb
52f43c9
 
 
805f6fe
 
 
 
 
 
fad8a16
 
52f43c9
46cd5e7
b93d861
46cd5e7
d9d80a0
bedfda3
255991b
805f6fe
52f43c9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import pickle
import streamlit as st
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)

classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")

with open('titles_astiko.pkl', 'rb') as file:
    titles_astiko = pickle.load(file)


# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]


def classify(text):
    output = classifier(text, titles_astiko, multi_label=True)
    return output


text = st.text_input('Enter some text:')  # Input field for new text
if text:
    st.text(classify(text))