sotosbarl commited on
Commit
d9d80a0
·
1 Parent(s): bedfda3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -7,11 +7,17 @@ model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
 
 
 
 
 
 
 
 
10
  def classify(text):
11
  input = tokenizer(text, truncation=True, return_tensors="pt")
12
  output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
13
  prediction = torch.softmax(output["logits"][0], -1).tolist()
14
- label_names = ["θυμός", "χαρά", "λύπη"]
15
  prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
16
  return prediction
17
 
 
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
 
10
+ with open('articles_list.pkl', 'rb') as file:
11
+ articles_list = pickle.load(file)
12
+
13
+ label_names = []
14
+ for i in articles_list:
15
+ label_names.append(i[0:15])
16
+
17
  def classify(text):
18
  input = tokenizer(text, truncation=True, return_tensors="pt")
19
  output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
20
  prediction = torch.softmax(output["logits"][0], -1).tolist()
 
21
  prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
22
  return prediction
23