Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
import torch | |
from tqdm.auto import trange | |
import typing as tp | |
from einops import rearrange | |
from torch import nn | |
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config | |
from .factory import create_pretransform_from_config | |
from .lm_backbone import AudioLMBackbone, XTransformersAudioLMBackbone, ContinuousTransformerAudioLMBackbone | |
from .pretransforms import Pretransform, AutoencoderPretransform, PretrainedDACPretransform, AudiocraftCompressionPretransform | |
from .utils import multinomial, sample_top_k, sample_top_p | |
from .codebook_patterns import ( | |
CodebooksPatternProvider, | |
DelayedPatternProvider, | |
MusicLMPattern, | |
ParallelPatternProvider, | |
UnrolledPatternProvider | |
) | |
# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/lm.py under MIT license | |
# License can be found in LICENSES/LICENSE_META.txt | |
class LMOutput: | |
# The logits are already re-aligned with the input codes | |
# hence no extra shift is required, e.g. when computing CE | |
logits: torch.Tensor # [B, K, T, card] | |
mask: torch.Tensor # [B, K, T] | |
# Wrapper for a multi-codebook language model | |
# Handles patterns and quantizer heads | |
class AudioLanguageModel(nn.Module): | |
def __init__( | |
self, | |
pattern_provider: CodebooksPatternProvider, | |
backbone: AudioLMBackbone, | |
num_quantizers: int, | |
codebook_size: int | |
): | |
super().__init__() | |
self.pattern_provider = pattern_provider | |
self.backbone = backbone | |
self.num_quantizers = num_quantizers | |
self.codebook_size = codebook_size | |
self.masked_token_id = codebook_size | |
# Per-quantizer embedders | |
# Add one for the mask embed | |
self.embeds = nn.ModuleList([nn.Embedding(codebook_size + 1, backbone.embed_dim) for _ in range(num_quantizers)]) | |
# Per-quantizer output heads | |
self.quantizer_heads = nn.ModuleList([ | |
nn.Linear(backbone.embed_dim, codebook_size) for _ in range(num_quantizers) | |
]) | |
def forward(self, | |
sequence: torch.Tensor, #[batch, seq_len, | |
prepend_cond=None, #[batch, seq, channels] | |
prepend_cond_mask=None, | |
cross_attn_cond=None, #[batch, seq, channels], | |
**kwargs | |
): | |
batch, num_quantizers, seq_len = sequence.shape | |
assert num_quantizers == self.num_quantizers, "Number of quantizers in sequence must match number of quantizers in model" | |
backbone_input = sum([self.embeds[i](sequence[:, i]) for i in range(num_quantizers)]) # [batch, seq_len, embed_dim] | |
dtype = next(self.parameters()).dtype | |
if cross_attn_cond is not None: | |
cross_attn_cond = cross_attn_cond.to(dtype) | |
if prepend_cond is not None: | |
prepend_cond = prepend_cond.to(dtype) | |
if prepend_cond_mask is not None: | |
prepend_cond_mask = prepend_cond_mask.to(dtype) | |
backbone_input = backbone_input.to(dtype) | |
output = self.backbone( | |
backbone_input, | |
cross_attn_cond=cross_attn_cond, | |
prepend_cond=prepend_cond, | |
prepend_cond_mask=prepend_cond_mask, | |
**kwargs | |
) # [batch, seq_len, embed_dim] | |
# Run output through quantizer heads | |
logits = torch.stack([self.quantizer_heads[i](output) for i in range(num_quantizers)], dim=1) # [batch, num_quantizers, seq_len, codebook_size] | |
return logits | |
def compute_logits( | |
self, | |
codes, #[batch, num_quantizers, seq_len] | |
**kwargs): | |
""" | |
Compute logits for a batch of codes, optionally conditioning on cross-attention and prepend conditioning | |
Handles translation between input sequence and pattern-shifted sequence | |
Only used during training | |
""" | |
batch, _, seq_len = codes.shape | |
pattern = self.pattern_provider.get_pattern(seq_len) | |
# Apply the token pattern to the codes, shifting the codes as needed and masking out invalid steps | |
shifted_codes, _, _ = pattern.build_pattern_sequence( | |
codes, | |
self.masked_token_id, | |
keep_only_valid_steps=True | |
) | |
# Run the model to get logits for each quantizer [batch, num_quantizers, seq_len, codebook_size] | |
logits = self(shifted_codes, **kwargs) | |
# Rearrange logits to prepare to revert pattern | |
logits = rearrange(logits, "b n s c -> b c n s") | |
# Revert sequence logits back to original sequence length, removing masked steps | |
logits, _, logits_mask = pattern.revert_pattern_logits( | |
logits, float('nan'), keep_only_valid_steps=True | |
) | |
logits = rearrange(logits, "b c n t -> b n t c") | |
logits_mask = logits_mask[None, :, :].expand(batch, -1, -1) # [batch, num_quantizers, seq_len] | |
return LMOutput(logits=logits, mask=logits_mask) | |
# Conditioning and generation wrapper for a multi-codebook language model | |
# Handles conditioning, CFG, generation, and encoding/decoding | |
class AudioLanguageModelWrapper(nn.Module): | |
def __init__( | |
self, | |
pretransform: Pretransform, | |
lm: AudioLanguageModel, | |
sample_rate: int, | |
min_input_length: int, | |
conditioner: MultiConditioner = None, | |
cross_attn_cond_ids: tp.List[str] = [], | |
prepend_cond_ids: tp.List[str] = [], | |
global_cond_ids: tp.List[str] = [] | |
): | |
super().__init__() | |
assert pretransform.is_discrete, "Pretransform must be discrete" | |
self.pretransform = pretransform | |
self.pretransform.requires_grad_(False) | |
self.pretransform.eval() | |
if isinstance(self.pretransform, AutoencoderPretransform): | |
self.num_quantizers = self.pretransform.model.bottleneck.num_quantizers | |
self.codebook_size = self.pretransform.model.bottleneck.codebook_size | |
elif isinstance(self.pretransform, PretrainedDACPretransform): | |
self.num_quantizers = self.pretransform.model.num_quantizers | |
self.codebook_size = self.pretransform.model.codebook_size | |
elif isinstance(self.pretransform, AudiocraftCompressionPretransform): | |
self.num_quantizers = self.pretransform.num_quantizers | |
self.codebook_size = self.pretransform.codebook_size | |
else: | |
raise NotImplementedError(f"Unrecognized pretransform type {type(self.pretransform)}") | |
self.conditioner = conditioner | |
self.lm = lm | |
self.sample_rate = sample_rate | |
self.min_input_length = min_input_length | |
self.cross_attn_cond_ids = cross_attn_cond_ids | |
self.prepend_cond_ids = prepend_cond_ids | |
self.global_cond_ids = global_cond_ids | |
def get_conditioning_inputs(self, cond: tp.Dict[str, tp.Any], negative=False): | |
cross_attention_input = None | |
prepend_cond = None | |
prepend_cond_mask = None | |
global_cond = None | |
if len(self.cross_attn_cond_ids) > 0: | |
# Concatenate all cross-attention inputs over the sequence dimension | |
# Assumes that the cross-attention inputs are of shape (batch, seq, channels) | |
cross_attention_input = torch.cat([cond[key][0] for key in self.cross_attn_cond_ids], dim=1) | |
if len(self.prepend_cond_ids) > 0: | |
# Concatenate all prepend conditioning inputs over the sequence dimension | |
# Assumes that the prepend conditioning inputs are of shape (batch, seq, channels) | |
prepend_cond = torch.cat([cond[key][0] for key in self.prepend_cond_ids], dim=1) | |
prepend_cond_mask = torch.cat([cond[key][1] for key in self.prepend_cond_ids], dim=1) | |
if len(self.global_cond_ids) > 0: | |
# Concatenate all global conditioning inputs over the channel dimension | |
# Assumes that the global conditioning inputs are of shape (batch, channels) | |
global_cond = torch.cat([cond[key][0] for key in self.global_cond_ids], dim=-1) | |
if len(global_cond.shape) == 3: | |
global_cond = global_cond.squeeze(1) | |
if negative: | |
return { | |
"negative_cross_attn_cond": cross_attention_input, | |
"negative_prepend_cond": prepend_cond, | |
"negative_prepend_cond_mask": prepend_cond_mask, | |
"negative_global_cond": global_cond | |
} | |
else: | |
return { | |
"cross_attn_cond": cross_attention_input, | |
"prepend_cond": prepend_cond, | |
"prepend_cond_mask": prepend_cond_mask, | |
"global_cond": global_cond | |
} | |
def compute_logits( | |
self, | |
codes, | |
condition_tensors=None, | |
cfg_dropout_prob=0.0, | |
**kwargs | |
): | |
""" | |
Compute logits for a batch of codes, and translates from conditioning inputs to model inputs | |
Handles CFG dropout | |
""" | |
if condition_tensors is None: | |
condition_tensors = {} | |
conditioning_inputs = self.get_conditioning_inputs(condition_tensors) | |
cross_attn_cond = conditioning_inputs["cross_attn_cond"] | |
prepend_cond = conditioning_inputs["prepend_cond"] | |
prepend_cond_mask = conditioning_inputs["prepend_cond_mask"] | |
global_cond = conditioning_inputs["global_cond"] | |
if cfg_dropout_prob > 0.0: | |
if cross_attn_cond is not None: | |
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device) | |
dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool) | |
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond) | |
if prepend_cond is not None: | |
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device) | |
dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool) | |
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond) | |
if global_cond is not None: | |
null_embed = torch.zeros_like(global_cond, device=global_cond.device) | |
dropout_mask = torch.bernoulli(torch.full((global_cond.shape[0], 1), cfg_dropout_prob, device=global_cond.device)).to(torch.bool) | |
global_cond = torch.where(dropout_mask, null_embed, global_cond) | |
return self.lm.compute_logits(codes, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs) | |
def _sample_next_token( | |
self, | |
sequence, #[batch, num_quantizers, seq_len] | |
conditioning_tensors=None, | |
cross_attn_use_cfg=True, | |
prepend_use_cfg=True, | |
global_use_cfg=True, | |
cfg_scale=1.0, | |
top_k=250, | |
top_p=0.0, | |
temp=1.0, | |
**kwargs | |
): | |
""" | |
Sample the next token for a batch of codes, and translates from conditioning inputs to model inputs | |
Handles CFG inference | |
""" | |
if conditioning_tensors is None: | |
conditioning_tensors = {} | |
conditioning_inputs = self.get_conditioning_inputs(conditioning_tensors) | |
cross_attn_cond = conditioning_inputs["cross_attn_cond"] | |
prepend_cond = conditioning_inputs["prepend_cond"] | |
prepend_cond_mask = conditioning_inputs["prepend_cond_mask"] | |
global_cond = conditioning_inputs["global_cond"] | |
if cfg_scale != 1.0: | |
# Batch size is doubled to account for negative samples | |
sequence = torch.cat([sequence, sequence], dim=0) | |
if cross_attn_cond is not None and cross_attn_use_cfg: | |
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device) | |
cross_attn_cond = torch.cat([cross_attn_cond, null_embed], dim=0) | |
if prepend_cond is not None and prepend_use_cfg: | |
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device) | |
prepend_cond = torch.cat([prepend_cond, null_embed], dim=0) | |
if prepend_cond_mask is not None: | |
prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0) | |
if global_cond is not None and global_use_cfg: | |
null_embed = torch.zeros_like(global_cond, device=global_cond.device) | |
global_cond = torch.cat([global_cond, null_embed], dim=0) | |
logits = self.lm(sequence, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs) | |
if cfg_scale != 1.0: | |
cond_logits, uncond_logits = logits.chunk(2, dim=0) | |
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale | |
logits = rearrange(logits, "b n s c -> b n c s") # [batch, num_quantizers, codebook_size, seq_len] | |
# Grab the logits for the last step | |
logits = logits[:, :, :, -1] # [batch, num_quantizers, codebook_size] | |
# Apply top-k or top-p sampling | |
if temp > 0: | |
probs = torch.softmax(logits / temp, dim=-1) | |
if top_p > 0.0: | |
next_token = sample_top_p(probs, p=top_p) | |
elif top_k > 0: | |
next_token = sample_top_k(probs, k=top_k) | |
else: | |
next_token = multinomial(probs, num_samples=1) | |
else: | |
next_token = torch.argmax(logits, dim=-1, keepdim=True) # [batch, num_quantizers, 1] | |
return next_token | |
def generate( | |
self, | |
max_gen_len: int = 256, | |
batch_size: tp.Optional[int] = None, | |
init_data: tp.Optional[torch.Tensor] = None, | |
conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None, | |
conditioning_tensors: tp.Optional[tp.Dict[str, tp.Any]] = None, | |
callback: tp.Optional[tp.Callable[[int, int], None]] = None, | |
use_cache: bool = True, | |
cfg_scale: float = 1.0, | |
**kwargs | |
): | |
device = next(self.parameters()).device | |
if conditioning_tensors is None and conditioning is not None: | |
# Convert conditioning inputs to conditioning tensors | |
conditioning_tensors = self.conditioner(conditioning, device) | |
# Check that batch size is consistent across inputs | |
possible_batch_sizes = [] | |
if batch_size is not None: | |
possible_batch_sizes.append(batch_size) | |
elif init_data is not None: | |
possible_batch_sizes.append(init_data.shape[0]) | |
elif conditioning_tensors is not None: | |
# Assume that the first conditioning tensor has the batch dimension | |
possible_batch_sizes.append(conditioning_tensors[list(conditioning_tensors.keys())[0]][0].shape[0]) | |
else: | |
possible_batch_sizes.append(1) | |
assert [x == possible_batch_sizes[0] for x in possible_batch_sizes], "Batch size must be consistent across inputs" | |
batch_size = possible_batch_sizes[0] | |
if init_data is None: | |
# Initialize with zeros | |
assert batch_size > 0 | |
init_data = torch.zeros((batch_size, self.num_quantizers, 0), device=device, dtype=torch.long) | |
batch_size, num_quantizers, seq_len = init_data.shape | |
start_offset = seq_len | |
assert start_offset < max_gen_len, "init data longer than max gen length" | |
pattern = self.lm.pattern_provider.get_pattern(max_gen_len) | |
unknown_token = -1 | |
# Initialize the generated codes with the init data, padded with unknown tokens | |
gen_codes = torch.full((batch_size, num_quantizers, max_gen_len), unknown_token, device=device, dtype=torch.long) | |
gen_codes[:, :, :start_offset] = init_data # [batch, num_quantizers, max_gen_len] | |
gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.lm.masked_token_id) # [batch, num_quantizers, gen_sequence_len] | |
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset) | |
assert start_offset_sequence is not None | |
# Generation | |
prev_offset = 0 | |
gen_sequence_len = gen_sequence.shape[-1] | |
# Reset generation cache | |
if use_cache and self.lm.backbone.use_generation_cache: | |
self.lm.backbone.reset_generation_cache(max_gen_len, batch_size if cfg_scale == 1.0 else batch_size * 2) | |
for offset in trange(start_offset_sequence, gen_sequence_len): | |
# Get the full sequence up to the current offset | |
curr_sequence = gen_sequence[..., prev_offset:offset] | |
next_token = self._sample_next_token( | |
curr_sequence, | |
conditioning_tensors=conditioning_tensors, | |
use_cache=use_cache, | |
cfg_scale=cfg_scale, | |
**kwargs | |
) | |
valid_mask = mask[..., offset:offset+1].expand(batch_size, -1, -1) | |
next_token[~valid_mask] = self.lm.masked_token_id | |
# Update the generated sequence with the next token | |
gen_sequence[..., offset:offset+1] = torch.where( | |
gen_sequence[..., offset:offset+1] == unknown_token, | |
next_token, | |
gen_sequence[..., offset:offset+1] | |
) | |
if use_cache and self.lm.backbone.use_generation_cache: | |
# Only update the offset if caching is being used | |
prev_offset = offset | |
self.lm.backbone.update_generation_cache(offset) | |
if callback is not None: | |
# Callback to report progress | |
# Pass in the offset relative to the start of the sequence, and the length of the current sequence | |
callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence) | |
assert not (gen_sequence == unknown_token).any(), "Unknown tokens in generated sequence" | |
out_codes, _, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token) | |
# sanity checks over the returned codes and corresponding masks | |
assert (out_codes[..., :max_gen_len] != unknown_token).all() | |
assert (out_mask[..., :max_gen_len] == 1).all() | |
#out_codes = out_codes[..., 0:max_gen_len] | |
return out_codes | |
def generate_audio( | |
self, | |
**kwargs | |
): | |
""" | |
Generate audio from a batch of codes | |
""" | |
codes = self.generate(**kwargs) | |
audio = self.pretransform.decode_tokens(codes) | |
return audio | |
def create_audio_lm_from_config(config): | |
model_config = config.get('model', None) | |
assert model_config is not None, 'model config must be specified in config' | |
sample_rate = config.get('sample_rate', None) | |
assert sample_rate is not None, "Must specify sample_rate in config" | |
lm_config = model_config.get('lm', None) | |
assert lm_config is not None, 'lm config must be specified in model config' | |
codebook_pattern = lm_config.get("codebook_pattern", "delay") | |
pattern_providers = { | |
'parallel': ParallelPatternProvider, | |
'delay': DelayedPatternProvider, | |
'unroll': UnrolledPatternProvider, | |
'musiclm': MusicLMPattern, | |
} | |
pretransform_config = model_config.get("pretransform", None) | |
pretransform = create_pretransform_from_config(pretransform_config, sample_rate) | |
assert pretransform.is_discrete, "Pretransform must be discrete" | |
min_input_length = pretransform.downsampling_ratio | |
pattern_provider = pattern_providers[codebook_pattern](n_q=pretransform.num_quantizers) | |
conditioning_config = model_config.get('conditioning', None) | |
conditioner = None | |
if conditioning_config is not None: | |
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config) | |
cross_attn_cond_ids = lm_config.get('cross_attention_cond_ids', []) | |
prepend_cond_ids = lm_config.get('prepend_cond_ids', []) | |
global_cond_ids = lm_config.get('global_cond_ids', []) | |
lm_type = lm_config.get("type", None) | |
lm_model_config = lm_config.get("config", None) | |
assert lm_type is not None, "Must specify lm type in lm config" | |
assert lm_model_config is not None, "Must specify lm model config in lm config" | |
if lm_type == "x-transformers": | |
backbone = XTransformersAudioLMBackbone(**lm_model_config) | |
elif lm_type == "continuous_transformer": | |
backbone = ContinuousTransformerAudioLMBackbone(**lm_model_config) | |
else: | |
raise NotImplementedError(f"Unrecognized lm type {lm_type}") | |
lm = AudioLanguageModel( | |
pattern_provider=pattern_provider, | |
backbone=backbone, | |
num_quantizers=pretransform.num_quantizers, | |
codebook_size=pretransform.codebook_size | |
) | |
model = AudioLanguageModelWrapper( | |
pretransform=pretransform, | |
lm=lm, | |
conditioner=conditioner, | |
sample_rate=sample_rate, | |
min_input_length=min_input_length, | |
cross_attn_cond_ids=cross_attn_cond_ids, | |
prepend_cond_ids=prepend_cond_ids, | |
global_cond_ids=global_cond_ids | |
) | |
return model |