File size: 21,578 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from dataclasses import dataclass
import torch
from tqdm.auto import trange
import typing as tp
from einops import rearrange
from torch import nn

from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config
from .factory import create_pretransform_from_config
from .lm_backbone import AudioLMBackbone, XTransformersAudioLMBackbone, ContinuousTransformerAudioLMBackbone
from .pretransforms import Pretransform, AutoencoderPretransform, PretrainedDACPretransform, AudiocraftCompressionPretransform
from .utils import multinomial, sample_top_k, sample_top_p

from .codebook_patterns import (
    CodebooksPatternProvider,
    DelayedPatternProvider,
    MusicLMPattern,
    ParallelPatternProvider,
    UnrolledPatternProvider
)

# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/lm.py under MIT license
# License can be found in LICENSES/LICENSE_META.txt

@dataclass
class LMOutput:
    # The logits are already re-aligned with the input codes
    # hence no extra shift is required, e.g. when computing CE
    logits: torch.Tensor  # [B, K, T, card]
    mask: torch.Tensor  # [B, K, T]

# Wrapper for a multi-codebook language model
# Handles patterns and quantizer heads
class AudioLanguageModel(nn.Module):
    def __init__(
            self, 
            pattern_provider: CodebooksPatternProvider, 
            backbone: AudioLMBackbone,
            num_quantizers: int,
            codebook_size: int
        ):
        super().__init__()

        self.pattern_provider = pattern_provider
        self.backbone = backbone
        self.num_quantizers = num_quantizers
        self.codebook_size = codebook_size

        self.masked_token_id = codebook_size

        # Per-quantizer embedders
        # Add one for the mask embed
        self.embeds = nn.ModuleList([nn.Embedding(codebook_size + 1, backbone.embed_dim) for _ in range(num_quantizers)])

        # Per-quantizer output heads
        self.quantizer_heads = nn.ModuleList([
            nn.Linear(backbone.embed_dim, codebook_size) for _ in range(num_quantizers)
        ])

    def forward(self,
            sequence: torch.Tensor, #[batch, seq_len, 
            prepend_cond=None, #[batch, seq, channels]
            prepend_cond_mask=None,
            cross_attn_cond=None, #[batch, seq, channels],
            **kwargs
        ):

        batch, num_quantizers, seq_len = sequence.shape

        assert num_quantizers == self.num_quantizers, "Number of quantizers in sequence must match number of quantizers in model"

        backbone_input = sum([self.embeds[i](sequence[:, i]) for i in range(num_quantizers)]) # [batch, seq_len, embed_dim]

        dtype = next(self.parameters()).dtype

        if cross_attn_cond is not None:
            cross_attn_cond = cross_attn_cond.to(dtype)

        if prepend_cond is not None:
            prepend_cond = prepend_cond.to(dtype)

            if prepend_cond_mask is not None:
                prepend_cond_mask = prepend_cond_mask.to(dtype)
            
        backbone_input = backbone_input.to(dtype)

        output = self.backbone(
            backbone_input,
            cross_attn_cond=cross_attn_cond,
            prepend_cond=prepend_cond,
            prepend_cond_mask=prepend_cond_mask,
            **kwargs
        ) # [batch, seq_len, embed_dim]

        # Run output through quantizer heads
        logits = torch.stack([self.quantizer_heads[i](output) for i in range(num_quantizers)], dim=1) # [batch, num_quantizers, seq_len, codebook_size]

        return logits
    
    def compute_logits(
            self, 
            codes, #[batch, num_quantizers, seq_len]
            **kwargs):
        """
        Compute logits for a batch of codes, optionally conditioning on cross-attention and prepend conditioning
        Handles translation between input sequence and pattern-shifted sequence
        Only used during training
        """
        
        batch, _, seq_len = codes.shape

        pattern = self.pattern_provider.get_pattern(seq_len)

        # Apply the token pattern to the codes, shifting the codes as needed and masking out invalid steps
        shifted_codes, _, _ = pattern.build_pattern_sequence(
            codes,
            self.masked_token_id,
            keep_only_valid_steps=True
        )

        # Run the model to get logits for each quantizer [batch, num_quantizers, seq_len, codebook_size]
        logits = self(shifted_codes, **kwargs)

        # Rearrange logits to prepare to revert pattern
        logits = rearrange(logits, "b n s c -> b c n s")

        # Revert sequence logits back to original sequence length, removing masked steps
        logits, _, logits_mask = pattern.revert_pattern_logits(
            logits, float('nan'), keep_only_valid_steps=True
        )

        logits = rearrange(logits, "b c n t -> b n t c")

        logits_mask = logits_mask[None, :, :].expand(batch, -1, -1) # [batch, num_quantizers, seq_len]

        return LMOutput(logits=logits, mask=logits_mask)

# Conditioning and generation wrapper for a multi-codebook language model
# Handles conditioning, CFG, generation, and encoding/decoding
class AudioLanguageModelWrapper(nn.Module):
    def __init__(
            self, 
            pretransform: Pretransform,
            lm: AudioLanguageModel,
            sample_rate: int,
            min_input_length: int,
            conditioner: MultiConditioner = None,
            cross_attn_cond_ids: tp.List[str] = [],
            prepend_cond_ids: tp.List[str] = [],
            global_cond_ids: tp.List[str] = []
        ):
        super().__init__()
        
        assert pretransform.is_discrete, "Pretransform must be discrete"
        self.pretransform = pretransform

        self.pretransform.requires_grad_(False)
        self.pretransform.eval()

        if isinstance(self.pretransform, AutoencoderPretransform):
            self.num_quantizers = self.pretransform.model.bottleneck.num_quantizers
            self.codebook_size = self.pretransform.model.bottleneck.codebook_size
        elif isinstance(self.pretransform, PretrainedDACPretransform):
            self.num_quantizers = self.pretransform.model.num_quantizers
            self.codebook_size = self.pretransform.model.codebook_size
        elif isinstance(self.pretransform, AudiocraftCompressionPretransform):
            self.num_quantizers = self.pretransform.num_quantizers
            self.codebook_size = self.pretransform.codebook_size
        else:
            raise NotImplementedError(f"Unrecognized pretransform type {type(self.pretransform)}")

        self.conditioner = conditioner

        self.lm = lm

        self.sample_rate = sample_rate
        self.min_input_length = min_input_length

        self.cross_attn_cond_ids = cross_attn_cond_ids
        self.prepend_cond_ids = prepend_cond_ids
        self.global_cond_ids = global_cond_ids
    
    def get_conditioning_inputs(self, cond: tp.Dict[str, tp.Any], negative=False):
        cross_attention_input = None
        prepend_cond = None
        prepend_cond_mask = None
        global_cond = None

        if len(self.cross_attn_cond_ids) > 0:
            # Concatenate all cross-attention inputs over the sequence dimension
            # Assumes that the cross-attention inputs are of shape (batch, seq, channels)
            cross_attention_input = torch.cat([cond[key][0] for key in self.cross_attn_cond_ids], dim=1)

        if len(self.prepend_cond_ids) > 0:
            # Concatenate all prepend conditioning inputs over the sequence dimension
            # Assumes that the prepend conditioning inputs are of shape (batch, seq, channels)
            prepend_cond = torch.cat([cond[key][0] for key in self.prepend_cond_ids], dim=1)
            prepend_cond_mask = torch.cat([cond[key][1] for key in self.prepend_cond_ids], dim=1)

        if len(self.global_cond_ids) > 0:
            # Concatenate all global conditioning inputs over the channel dimension
            # Assumes that the global conditioning inputs are of shape (batch, channels)
            global_cond = torch.cat([cond[key][0] for key in self.global_cond_ids], dim=-1)
            if len(global_cond.shape) == 3:
                global_cond = global_cond.squeeze(1)

        if negative:
            return {
                "negative_cross_attn_cond": cross_attention_input,
                "negative_prepend_cond": prepend_cond,
                "negative_prepend_cond_mask": prepend_cond_mask,
                "negative_global_cond": global_cond
            }
        else:
            return {
                "cross_attn_cond": cross_attention_input,
                "prepend_cond": prepend_cond,
                "prepend_cond_mask": prepend_cond_mask,
                "global_cond": global_cond
            }
        
    def compute_logits(
            self, 
            codes, 
            condition_tensors=None, 
            cfg_dropout_prob=0.0,
            **kwargs
        ):
        """
        Compute logits for a batch of codes, and translates from conditioning inputs to model inputs
        Handles CFG dropout
        """

        if condition_tensors is None:
            condition_tensors = {}

        conditioning_inputs = self.get_conditioning_inputs(condition_tensors)

        cross_attn_cond = conditioning_inputs["cross_attn_cond"]
        prepend_cond = conditioning_inputs["prepend_cond"]
        prepend_cond_mask = conditioning_inputs["prepend_cond_mask"]
        global_cond = conditioning_inputs["global_cond"]

        if cfg_dropout_prob > 0.0:
            if cross_attn_cond is not None:
                null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
                dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool)
                cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
        
            if prepend_cond is not None:
                null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
                dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool)
                prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)

            if global_cond is not None:
                null_embed = torch.zeros_like(global_cond, device=global_cond.device)
                dropout_mask = torch.bernoulli(torch.full((global_cond.shape[0], 1), cfg_dropout_prob, device=global_cond.device)).to(torch.bool)
                global_cond = torch.where(dropout_mask, null_embed, global_cond)

        return self.lm.compute_logits(codes, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs)
    
    def _sample_next_token(
            self, 
            sequence, #[batch, num_quantizers, seq_len]
            conditioning_tensors=None, 
            cross_attn_use_cfg=True,
            prepend_use_cfg=True,
            global_use_cfg=True,
            cfg_scale=1.0,
            top_k=250,
            top_p=0.0,
            temp=1.0,
            **kwargs
        ):
        """
        Sample the next token for a batch of codes, and translates from conditioning inputs to model inputs
        Handles CFG inference
        """

        if conditioning_tensors is None:
            conditioning_tensors = {}

        conditioning_inputs = self.get_conditioning_inputs(conditioning_tensors)

        cross_attn_cond = conditioning_inputs["cross_attn_cond"]
        prepend_cond = conditioning_inputs["prepend_cond"]
        prepend_cond_mask = conditioning_inputs["prepend_cond_mask"]
        global_cond = conditioning_inputs["global_cond"]

        if cfg_scale != 1.0:
            
            # Batch size is doubled to account for negative samples
            sequence = torch.cat([sequence, sequence], dim=0)

            if cross_attn_cond is not None and cross_attn_use_cfg:
                null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)

                cross_attn_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
            
            if prepend_cond is not None and prepend_use_cfg:
                null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)

                prepend_cond = torch.cat([prepend_cond, null_embed], dim=0) 

                if prepend_cond_mask is not None:
                    prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)

            if global_cond is not None and global_use_cfg:
                null_embed = torch.zeros_like(global_cond, device=global_cond.device)

                global_cond = torch.cat([global_cond, null_embed], dim=0)

        logits = self.lm(sequence, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs)

        if cfg_scale != 1.0:
            cond_logits, uncond_logits = logits.chunk(2, dim=0)

            logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale

        logits = rearrange(logits, "b n s c -> b n c s") # [batch, num_quantizers, codebook_size, seq_len]
        
        # Grab the logits for the last step
        logits = logits[:, :, :, -1] # [batch, num_quantizers, codebook_size]

        # Apply top-k or top-p sampling

        if temp > 0:
            probs = torch.softmax(logits / temp, dim=-1)

            if top_p > 0.0:
                next_token = sample_top_p(probs, p=top_p)
            elif top_k > 0:
                next_token = sample_top_k(probs, k=top_k)
            else:
                next_token = multinomial(probs, num_samples=1)

        else:
            next_token = torch.argmax(logits, dim=-1, keepdim=True) # [batch, num_quantizers, 1]

        return next_token

    @torch.no_grad()
    def generate(
        self,
        max_gen_len: int = 256,
        batch_size: tp.Optional[int] = None,
        init_data: tp.Optional[torch.Tensor] = None,
        conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None,
        conditioning_tensors: tp.Optional[tp.Dict[str, tp.Any]] = None,
        callback: tp.Optional[tp.Callable[[int, int], None]] = None,
        use_cache: bool = True,
        cfg_scale: float = 1.0,
        **kwargs
    ):
        device = next(self.parameters()).device

        if conditioning_tensors is None and conditioning is not None:
            # Convert conditioning inputs to conditioning tensors
            conditioning_tensors = self.conditioner(conditioning, device)

        # Check that batch size is consistent across inputs
        possible_batch_sizes = []

        if batch_size is not None:
            possible_batch_sizes.append(batch_size)
        elif init_data is not None:
            possible_batch_sizes.append(init_data.shape[0])
        elif conditioning_tensors is not None:
            # Assume that the first conditioning tensor has the batch dimension
            possible_batch_sizes.append(conditioning_tensors[list(conditioning_tensors.keys())[0]][0].shape[0])
        else:
            possible_batch_sizes.append(1)

        assert [x == possible_batch_sizes[0] for x in possible_batch_sizes], "Batch size must be consistent across inputs"

        batch_size = possible_batch_sizes[0]
        
        if init_data is None:
            # Initialize with zeros
            assert batch_size > 0
            init_data = torch.zeros((batch_size, self.num_quantizers, 0), device=device, dtype=torch.long)

        batch_size, num_quantizers, seq_len = init_data.shape

        start_offset = seq_len
        assert start_offset < max_gen_len, "init data longer than max gen length"

        pattern = self.lm.pattern_provider.get_pattern(max_gen_len)

        unknown_token = -1

        # Initialize the generated codes with the init data, padded with unknown tokens
        gen_codes = torch.full((batch_size, num_quantizers, max_gen_len), unknown_token, device=device, dtype=torch.long)
        gen_codes[:, :, :start_offset] = init_data # [batch, num_quantizers, max_gen_len]

        gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.lm.masked_token_id) # [batch, num_quantizers, gen_sequence_len]

        start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
        assert start_offset_sequence is not None

        # Generation
        prev_offset = 0
        gen_sequence_len = gen_sequence.shape[-1]

        # Reset generation cache
        if use_cache and self.lm.backbone.use_generation_cache:
            self.lm.backbone.reset_generation_cache(max_gen_len, batch_size if cfg_scale == 1.0 else batch_size * 2)

        for offset in trange(start_offset_sequence, gen_sequence_len):

            # Get the full sequence up to the current offset
            curr_sequence = gen_sequence[..., prev_offset:offset]

            next_token = self._sample_next_token(
                curr_sequence,
                conditioning_tensors=conditioning_tensors,
                use_cache=use_cache,
                cfg_scale=cfg_scale,
                **kwargs
            )

            valid_mask = mask[..., offset:offset+1].expand(batch_size, -1, -1)
            next_token[~valid_mask] = self.lm.masked_token_id

            # Update the generated sequence with the next token
            gen_sequence[..., offset:offset+1] = torch.where(
                gen_sequence[..., offset:offset+1] == unknown_token,
                next_token, 
                gen_sequence[..., offset:offset+1]
            )

            if use_cache and self.lm.backbone.use_generation_cache:
                # Only update the offset if caching is being used
                prev_offset = offset

                self.lm.backbone.update_generation_cache(offset)

            if callback is not None:
                # Callback to report progress
                # Pass in the offset relative to the start of the sequence, and the length of the current sequence
                callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence)

        assert not (gen_sequence == unknown_token).any(), "Unknown tokens in generated sequence"

        out_codes, _, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)

        # sanity checks over the returned codes and corresponding masks
        assert (out_codes[..., :max_gen_len] != unknown_token).all()
        assert (out_mask[..., :max_gen_len] == 1).all()

        #out_codes = out_codes[..., 0:max_gen_len]

        return out_codes
    

    def generate_audio(
        self,
        **kwargs
    ):
        """
        Generate audio from a batch of codes
        """

        codes = self.generate(**kwargs)

        audio = self.pretransform.decode_tokens(codes)

        return audio


def create_audio_lm_from_config(config):
    model_config = config.get('model', None)
    assert model_config is not None, 'model config must be specified in config'

    sample_rate = config.get('sample_rate', None)
    assert sample_rate is not None, "Must specify sample_rate in config"
    
    lm_config = model_config.get('lm', None)
    assert lm_config is not None, 'lm config must be specified in model config'

    codebook_pattern = lm_config.get("codebook_pattern", "delay")

    pattern_providers = {
        'parallel': ParallelPatternProvider,
        'delay': DelayedPatternProvider,
        'unroll': UnrolledPatternProvider,
        'musiclm': MusicLMPattern,
    }

    pretransform_config = model_config.get("pretransform", None)
    
    pretransform = create_pretransform_from_config(pretransform_config, sample_rate)

    assert pretransform.is_discrete, "Pretransform must be discrete"

    min_input_length = pretransform.downsampling_ratio

    pattern_provider = pattern_providers[codebook_pattern](n_q=pretransform.num_quantizers)

    conditioning_config = model_config.get('conditioning', None)

    conditioner = None
    if conditioning_config is not None:
        conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config)

    cross_attn_cond_ids = lm_config.get('cross_attention_cond_ids', [])
    prepend_cond_ids = lm_config.get('prepend_cond_ids', [])
    global_cond_ids = lm_config.get('global_cond_ids', [])

    lm_type = lm_config.get("type", None)
    lm_model_config = lm_config.get("config", None)

    assert lm_type is not None, "Must specify lm type in lm config"
    assert lm_model_config is not None, "Must specify lm model config in lm config"

    if lm_type == "x-transformers":
        backbone = XTransformersAudioLMBackbone(**lm_model_config)
    elif lm_type == "continuous_transformer":
        backbone = ContinuousTransformerAudioLMBackbone(**lm_model_config)
    else:
        raise NotImplementedError(f"Unrecognized lm type {lm_type}")

    lm = AudioLanguageModel(
        pattern_provider=pattern_provider,
        backbone=backbone,
        num_quantizers=pretransform.num_quantizers,
        codebook_size=pretransform.codebook_size
    )

    model = AudioLanguageModelWrapper(
        pretransform=pretransform,
        lm=lm,
        conditioner=conditioner,
        sample_rate=sample_rate,
        min_input_length=min_input_length,
        cross_attn_cond_ids=cross_attn_cond_ids,
        prepend_cond_ids=prepend_cond_ids,
        global_cond_ids=global_cond_ids
    )

    return model