sonalkum's picture
stable
9172422
raw
history blame
12.1 kB
import numpy as np
import torch
import typing as tp
import math
from torchaudio import transforms as T
from .utils import prepare_audio
from .sampling import sample, sample_k, sample_rf
from ..data.utils import PadCrop
def generate_diffusion_uncond(
model,
steps: int = 250,
batch_size: int = 1,
sample_size: int = 2097152,
seed: int = -1,
device: str = "cuda",
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
init_noise_level: float = 1.0,
return_latents = False,
**sampler_kwargs
) -> torch.Tensor:
# The length of the output in audio samples
audio_sample_size = sample_size
# If this is latent diffusion, change sample_size instead to the downsampled latent size
if model.pretransform is not None:
sample_size = sample_size // model.pretransform.downsampling_ratio
# Seed
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
print(seed)
torch.manual_seed(seed)
# Define the initial noise immediately after setting the seed
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
if init_audio is not None:
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
in_sr, init_audio = init_audio
io_channels = model.io_channels
# For latent models, set the io_channels to the autoencoder's io_channels
if model.pretransform is not None:
io_channels = model.pretransform.io_channels
# Prepare the initial audio for use by the model
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
# For latent models, encode the initial audio into latents
if model.pretransform is not None:
init_audio = model.pretransform.encode(init_audio)
init_audio = init_audio.repeat(batch_size, 1, 1)
else:
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
init_audio = None
init_noise_level = None
# Inpainting mask
if init_audio is not None:
# variations
sampler_kwargs["sigma_max"] = init_noise_level
mask = None
else:
mask = None
# Now the generative AI part:
diff_objective = model.diffusion_objective
if diff_objective == "v":
# k-diffusion denoising process go!
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, device=device)
elif diff_objective == "rectified_flow":
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, device=device)
# Denoising process done.
# If this is latent diffusion, decode latents back into audio
if model.pretransform is not None and not return_latents:
sampled = model.pretransform.decode(sampled)
# Return audio
return sampled
def generate_diffusion_cond(
model,
steps: int = 250,
cfg_scale=6,
conditioning: dict = None,
conditioning_tensors: tp.Optional[dict] = None,
negative_conditioning: dict = None,
negative_conditioning_tensors: tp.Optional[dict] = None,
batch_size: int = 1,
sample_size: int = 2097152,
sample_rate: int = 48000,
seed: int = -1,
device: str = "cuda",
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
init_noise_level: float = 1.0,
mask_args: dict = None,
return_latents = False,
**sampler_kwargs
) -> torch.Tensor:
"""
Generate audio from a prompt using a diffusion model.
Args:
model: The diffusion model to use for generation.
steps: The number of diffusion steps to use.
cfg_scale: Classifier-free guidance scale
conditioning: A dictionary of conditioning parameters to use for generation.
conditioning_tensors: A dictionary of precomputed conditioning tensors to use for generation.
batch_size: The batch size to use for generation.
sample_size: The length of the audio to generate, in samples.
sample_rate: The sample rate of the audio to generate (Deprecated, now pulled from the model directly)
seed: The random seed to use for generation, or -1 to use a random seed.
device: The device to use for generation.
init_audio: A tuple of (sample_rate, audio) to use as the initial audio for generation.
init_noise_level: The noise level to use when generating from an initial audio sample.
return_latents: Whether to return the latents used for generation instead of the decoded audio.
**sampler_kwargs: Additional keyword arguments to pass to the sampler.
"""
# The length of the output in audio samples
audio_sample_size = sample_size
# If this is latent diffusion, change sample_size instead to the downsampled latent size
if model.pretransform is not None:
sample_size = sample_size // model.pretransform.downsampling_ratio
# Seed
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
print(seed)
torch.manual_seed(seed)
# Define the initial noise immediately after setting the seed
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.benchmark = False
# Conditioning
assert conditioning is not None or conditioning_tensors is not None, "Must provide either conditioning or conditioning_tensors"
if conditioning_tensors is None:
conditioning_tensors = model.conditioner(conditioning, device)
conditioning_inputs = model.get_conditioning_inputs(conditioning_tensors)
if negative_conditioning is not None or negative_conditioning_tensors is not None:
if negative_conditioning_tensors is None:
negative_conditioning_tensors = model.conditioner(negative_conditioning, device)
negative_conditioning_tensors = model.get_conditioning_inputs(negative_conditioning_tensors, negative=True)
else:
negative_conditioning_tensors = {}
if init_audio is not None:
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
in_sr, init_audio = init_audio
io_channels = model.io_channels
# For latent models, set the io_channels to the autoencoder's io_channels
if model.pretransform is not None:
io_channels = model.pretransform.io_channels
# Prepare the initial audio for use by the model
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
# For latent models, encode the initial audio into latents
if model.pretransform is not None:
init_audio = model.pretransform.encode(init_audio)
init_audio = init_audio.repeat(batch_size, 1, 1)
else:
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
init_audio = None
init_noise_level = None
mask_args = None
# Inpainting mask
if init_audio is not None and mask_args is not None:
# Cut and paste init_audio according to cropfrom, pastefrom, pasteto
# This is helpful for forward and reverse outpainting
cropfrom = math.floor(mask_args["cropfrom"]/100.0 * sample_size)
pastefrom = math.floor(mask_args["pastefrom"]/100.0 * sample_size)
pasteto = math.ceil(mask_args["pasteto"]/100.0 * sample_size)
assert pastefrom < pasteto, "Paste From should be less than Paste To"
croplen = pasteto - pastefrom
if cropfrom + croplen > sample_size:
croplen = sample_size - cropfrom
cropto = cropfrom + croplen
pasteto = pastefrom + croplen
cutpaste = init_audio.new_zeros(init_audio.shape)
cutpaste[:, :, pastefrom:pasteto] = init_audio[:,:,cropfrom:cropto]
#print(cropfrom, cropto, pastefrom, pasteto)
init_audio = cutpaste
# Build a soft mask (list of floats 0 to 1, the size of the latent) from the given args
mask = build_mask(sample_size, mask_args)
mask = mask.to(device)
elif init_audio is not None and mask_args is None:
# variations
sampler_kwargs["sigma_max"] = init_noise_level
mask = None
else:
mask = None
model_dtype = next(model.model.parameters()).dtype
noise = noise.type(model_dtype)
conditioning_inputs = {k: v.type(model_dtype) if v is not None else v for k, v in conditioning_inputs.items()}
# Now the generative AI part:
# k-diffusion denoising process go!
diff_objective = model.diffusion_objective
if diff_objective == "v":
# k-diffusion denoising process go!
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
elif diff_objective == "rectified_flow":
if "sigma_min" in sampler_kwargs:
del sampler_kwargs["sigma_min"]
if "sampler_type" in sampler_kwargs:
del sampler_kwargs["sampler_type"]
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
# v-diffusion:
#sampled = sample(model.model, noise, steps, 0, **conditioning_tensors, embedding_scale=cfg_scale)
del noise
del conditioning_tensors
del conditioning_inputs
torch.cuda.empty_cache()
# Denoising process done.
# If this is latent diffusion, decode latents back into audio
if model.pretransform is not None and not return_latents:
#cast sampled latents to pretransform dtype
sampled = sampled.to(next(model.pretransform.parameters()).dtype)
sampled = model.pretransform.decode(sampled)
# Return audio
return sampled
# builds a softmask given the parameters
# returns array of values 0 to 1, size sample_size, where 0 means noise / fresh generation, 1 means keep the input audio,
# and anything between is a mixture of old/new
# ideally 0.5 is half/half mixture but i haven't figured this out yet
def build_mask(sample_size, mask_args):
maskstart = math.floor(mask_args["maskstart"]/100.0 * sample_size)
maskend = math.ceil(mask_args["maskend"]/100.0 * sample_size)
softnessL = round(mask_args["softnessL"]/100.0 * sample_size)
softnessR = round(mask_args["softnessR"]/100.0 * sample_size)
marination = mask_args["marination"]
# use hann windows for softening the transition (i don't know if this is correct)
hannL = torch.hann_window(softnessL*2, periodic=False)[:softnessL]
hannR = torch.hann_window(softnessR*2, periodic=False)[softnessR:]
# build the mask.
mask = torch.zeros((sample_size))
mask[maskstart:maskend] = 1
mask[maskstart:maskstart+softnessL] = hannL
mask[maskend-softnessR:maskend] = hannR
# marination finishes the inpainting early in the denoising schedule, and lets audio get changed in the final rounds
if marination > 0:
mask = mask * (1-marination)
#print(mask)
return mask