Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,090 Bytes
9172422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import numpy as np
import torch
import typing as tp
import math
from torchaudio import transforms as T
from .utils import prepare_audio
from .sampling import sample, sample_k, sample_rf
from ..data.utils import PadCrop
def generate_diffusion_uncond(
model,
steps: int = 250,
batch_size: int = 1,
sample_size: int = 2097152,
seed: int = -1,
device: str = "cuda",
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
init_noise_level: float = 1.0,
return_latents = False,
**sampler_kwargs
) -> torch.Tensor:
# The length of the output in audio samples
audio_sample_size = sample_size
# If this is latent diffusion, change sample_size instead to the downsampled latent size
if model.pretransform is not None:
sample_size = sample_size // model.pretransform.downsampling_ratio
# Seed
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
print(seed)
torch.manual_seed(seed)
# Define the initial noise immediately after setting the seed
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
if init_audio is not None:
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
in_sr, init_audio = init_audio
io_channels = model.io_channels
# For latent models, set the io_channels to the autoencoder's io_channels
if model.pretransform is not None:
io_channels = model.pretransform.io_channels
# Prepare the initial audio for use by the model
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
# For latent models, encode the initial audio into latents
if model.pretransform is not None:
init_audio = model.pretransform.encode(init_audio)
init_audio = init_audio.repeat(batch_size, 1, 1)
else:
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
init_audio = None
init_noise_level = None
# Inpainting mask
if init_audio is not None:
# variations
sampler_kwargs["sigma_max"] = init_noise_level
mask = None
else:
mask = None
# Now the generative AI part:
diff_objective = model.diffusion_objective
if diff_objective == "v":
# k-diffusion denoising process go!
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, device=device)
elif diff_objective == "rectified_flow":
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, device=device)
# Denoising process done.
# If this is latent diffusion, decode latents back into audio
if model.pretransform is not None and not return_latents:
sampled = model.pretransform.decode(sampled)
# Return audio
return sampled
def generate_diffusion_cond(
model,
steps: int = 250,
cfg_scale=6,
conditioning: dict = None,
conditioning_tensors: tp.Optional[dict] = None,
negative_conditioning: dict = None,
negative_conditioning_tensors: tp.Optional[dict] = None,
batch_size: int = 1,
sample_size: int = 2097152,
sample_rate: int = 48000,
seed: int = -1,
device: str = "cuda",
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
init_noise_level: float = 1.0,
mask_args: dict = None,
return_latents = False,
**sampler_kwargs
) -> torch.Tensor:
"""
Generate audio from a prompt using a diffusion model.
Args:
model: The diffusion model to use for generation.
steps: The number of diffusion steps to use.
cfg_scale: Classifier-free guidance scale
conditioning: A dictionary of conditioning parameters to use for generation.
conditioning_tensors: A dictionary of precomputed conditioning tensors to use for generation.
batch_size: The batch size to use for generation.
sample_size: The length of the audio to generate, in samples.
sample_rate: The sample rate of the audio to generate (Deprecated, now pulled from the model directly)
seed: The random seed to use for generation, or -1 to use a random seed.
device: The device to use for generation.
init_audio: A tuple of (sample_rate, audio) to use as the initial audio for generation.
init_noise_level: The noise level to use when generating from an initial audio sample.
return_latents: Whether to return the latents used for generation instead of the decoded audio.
**sampler_kwargs: Additional keyword arguments to pass to the sampler.
"""
# The length of the output in audio samples
audio_sample_size = sample_size
# If this is latent diffusion, change sample_size instead to the downsampled latent size
if model.pretransform is not None:
sample_size = sample_size // model.pretransform.downsampling_ratio
# Seed
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
print(seed)
torch.manual_seed(seed)
# Define the initial noise immediately after setting the seed
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.benchmark = False
# Conditioning
assert conditioning is not None or conditioning_tensors is not None, "Must provide either conditioning or conditioning_tensors"
if conditioning_tensors is None:
conditioning_tensors = model.conditioner(conditioning, device)
conditioning_inputs = model.get_conditioning_inputs(conditioning_tensors)
if negative_conditioning is not None or negative_conditioning_tensors is not None:
if negative_conditioning_tensors is None:
negative_conditioning_tensors = model.conditioner(negative_conditioning, device)
negative_conditioning_tensors = model.get_conditioning_inputs(negative_conditioning_tensors, negative=True)
else:
negative_conditioning_tensors = {}
if init_audio is not None:
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
in_sr, init_audio = init_audio
io_channels = model.io_channels
# For latent models, set the io_channels to the autoencoder's io_channels
if model.pretransform is not None:
io_channels = model.pretransform.io_channels
# Prepare the initial audio for use by the model
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
# For latent models, encode the initial audio into latents
if model.pretransform is not None:
init_audio = model.pretransform.encode(init_audio)
init_audio = init_audio.repeat(batch_size, 1, 1)
else:
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
init_audio = None
init_noise_level = None
mask_args = None
# Inpainting mask
if init_audio is not None and mask_args is not None:
# Cut and paste init_audio according to cropfrom, pastefrom, pasteto
# This is helpful for forward and reverse outpainting
cropfrom = math.floor(mask_args["cropfrom"]/100.0 * sample_size)
pastefrom = math.floor(mask_args["pastefrom"]/100.0 * sample_size)
pasteto = math.ceil(mask_args["pasteto"]/100.0 * sample_size)
assert pastefrom < pasteto, "Paste From should be less than Paste To"
croplen = pasteto - pastefrom
if cropfrom + croplen > sample_size:
croplen = sample_size - cropfrom
cropto = cropfrom + croplen
pasteto = pastefrom + croplen
cutpaste = init_audio.new_zeros(init_audio.shape)
cutpaste[:, :, pastefrom:pasteto] = init_audio[:,:,cropfrom:cropto]
#print(cropfrom, cropto, pastefrom, pasteto)
init_audio = cutpaste
# Build a soft mask (list of floats 0 to 1, the size of the latent) from the given args
mask = build_mask(sample_size, mask_args)
mask = mask.to(device)
elif init_audio is not None and mask_args is None:
# variations
sampler_kwargs["sigma_max"] = init_noise_level
mask = None
else:
mask = None
model_dtype = next(model.model.parameters()).dtype
noise = noise.type(model_dtype)
conditioning_inputs = {k: v.type(model_dtype) if v is not None else v for k, v in conditioning_inputs.items()}
# Now the generative AI part:
# k-diffusion denoising process go!
diff_objective = model.diffusion_objective
if diff_objective == "v":
# k-diffusion denoising process go!
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
elif diff_objective == "rectified_flow":
if "sigma_min" in sampler_kwargs:
del sampler_kwargs["sigma_min"]
if "sampler_type" in sampler_kwargs:
del sampler_kwargs["sampler_type"]
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
# v-diffusion:
#sampled = sample(model.model, noise, steps, 0, **conditioning_tensors, embedding_scale=cfg_scale)
del noise
del conditioning_tensors
del conditioning_inputs
torch.cuda.empty_cache()
# Denoising process done.
# If this is latent diffusion, decode latents back into audio
if model.pretransform is not None and not return_latents:
#cast sampled latents to pretransform dtype
sampled = sampled.to(next(model.pretransform.parameters()).dtype)
sampled = model.pretransform.decode(sampled)
# Return audio
return sampled
# builds a softmask given the parameters
# returns array of values 0 to 1, size sample_size, where 0 means noise / fresh generation, 1 means keep the input audio,
# and anything between is a mixture of old/new
# ideally 0.5 is half/half mixture but i haven't figured this out yet
def build_mask(sample_size, mask_args):
maskstart = math.floor(mask_args["maskstart"]/100.0 * sample_size)
maskend = math.ceil(mask_args["maskend"]/100.0 * sample_size)
softnessL = round(mask_args["softnessL"]/100.0 * sample_size)
softnessR = round(mask_args["softnessR"]/100.0 * sample_size)
marination = mask_args["marination"]
# use hann windows for softening the transition (i don't know if this is correct)
hannL = torch.hann_window(softnessL*2, periodic=False)[:softnessL]
hannR = torch.hann_window(softnessR*2, periodic=False)[softnessR:]
# build the mask.
mask = torch.zeros((sample_size))
mask[maskstart:maskend] = 1
mask[maskstart:maskstart+softnessL] = hannL
mask[maskend-softnessR:maskend] = hannR
# marination finishes the inpainting early in the denoising schedule, and lets audio get changed in the final rounds
if marination > 0:
mask = mask * (1-marination)
#print(mask)
return mask
|