Fabrice-TIERCELIN's picture
This PR makes each generation different
f220d8f verified
raw
history blame
3.91 kB
import random
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("sonalkum/synthio-stable-audio-open")
print("Model loaded successfully.")
return model, model_config
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Function to set up, generate, and process the audio
@spaces.GPU # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=10, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
seed = random.randint(0, 2**63 - 1)
random.seed(seed)
torch.manual_seed(seed)
print(f"Using seed: {seed}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
# model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
# Setting up the Gradio Interface
paper_link = "https://arxiv.org/pdf/2410.02056"
paper_text = "Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data"
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 10, value=5, label="Duration in Seconds"),
gr.Slider(10, 250, value=150, step=10, label="Number of Diffusion Steps"),
gr.Slider(1, 10, value=7, step=0.1, label="CFG Scale")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Synthio Stable Audio Generator",
description="A text-to-audio diffusion model (based on the Stable Audio DiT architecture) for generating variable length synthetic audios from text prompts at 44.1kHz.<br>"+
"This model was developed as part of the paper: " + f"<a href='{paper_link}'>{paper_text}</a> <br>")
# Launch the Interface
interface.launch()