File size: 3,905 Bytes
f220d8f
a67b330
 
 
 
 
 
 
 
 
f342c36
 
a67b330
 
 
 
e688d2b
a67b330
 
 
b8a99cd
 
 
a67b330
6798398
31ef813
a67b330
 
 
f220d8f
 
 
 
 
a67b330
 
 
 
 
 
 
 
7a5c29d
a67b330
 
 
 
 
8b87f64
a67b330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f753f
 
a67b330
 
 
 
f78c6de
46f753f
f78c6de
a67b330
 
ed913d5
46f753f
 
a67b330
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import random
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid

# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

# Load the model outside of the GPU-decorated function
def load_model():
    print("Loading model...")
    model, model_config = get_pretrained_model("sonalkum/synthio-stable-audio-open")
    print("Model loaded successfully.")
    return model, model_config

# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()

# Function to set up, generate, and process the audio
@spaces.GPU  # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=10, steps=100, cfg_scale=7):
    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    seed = random.randint(0, 2**63 - 1)
    random.seed(seed)
    torch.manual_seed(seed)
    print(f"Using seed: {seed}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    # model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    # Generate stereo audio
    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=0.3,
        sigma_max=500,
        sampler_type="dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")

    # Rearrange audio batch to a single sequence
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")

    # Peak normalize, clip, convert to int16
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    print("Audio normalized and converted.")

    # Generate a unique filename for the output
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")

    # Return the path to the generated audio file
    return unique_filename

# Setting up the Gradio Interface
paper_link = "https://arxiv.org/pdf/2410.02056"
paper_text = "Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data"
interface = gr.Interface(
    fn=generate_audio,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
        gr.Slider(0, 10, value=5, label="Duration in Seconds"),
        gr.Slider(10, 250, value=150, step=10, label="Number of Diffusion Steps"),
        gr.Slider(1, 10, value=7, step=0.1, label="CFG Scale")
    ],
    outputs=gr.Audio(type="filepath", label="Generated Audio"),
    title="Synthio Stable Audio Generator",
    description="A text-to-audio diffusion model (based on the Stable Audio DiT architecture) for generating variable length synthetic audios from text prompts at 44.1kHz.<br>"+
                "This model was developed as part of the paper: " + f"<a href='{paper_link}'>{paper_text}</a> <br>")

# Launch the Interface
interface.launch()