|
# Image Captioning (vision-encoder-text-decoder model) training example |
|
|
|
The following example showcases how to finetune a vision-encoder-text-decoder model for image captioning |
|
using the JAX/Flax backend, leveraging 🤗 Transformers library's [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel). |
|
|
|
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. |
|
Models written in JAX/Flax are **immutable** and updated in a purely functional |
|
way which enables simple and efficient model parallelism. |
|
|
|
`run_image_captioning_flax.py` is a lightweight example of how to download and preprocess a dataset from the 🤗 Datasets |
|
library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. |
|
|
|
For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets.html#json-files and you also will find examples of these below. |
|
|
|
### Download COCO dataset (2017) |
|
This example uses COCO dataset (2017) through a custom dataset script, which requires users to manually download the |
|
COCO dataset before training. |
|
|
|
```bash |
|
mkdir data |
|
cd data |
|
wget http://images.cocodataset.org/zips/train2017.zip |
|
wget http://images.cocodataset.org/zips/val2017.zip |
|
wget http://images.cocodataset.org/zips/test2017.zip |
|
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip |
|
wget http://images.cocodataset.org/annotations/image_info_test2017.zip |
|
cd .. |
|
``` |
|
|
|
### Create a model from a vision encoder model and a text decoder model |
|
Next, we create a [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel) instance from a pre-trained vision encoder ([ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.FlaxViTModel)) and a pre-trained text decoder ([GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.FlaxGPT2Model)): |
|
|
|
```bash |
|
python3 create_model_from_encoder_decoder_models.py \ |
|
--output_dir model \ |
|
--encoder_model_name_or_path google/vit-base-patch16-224-in21k \ |
|
--decoder_model_name_or_path gpt2 |
|
``` |
|
|
|
### Train the model |
|
Finally, we can run the example script to train the model: |
|
|
|
```bash |
|
python3 run_image_captioning_flax.py \ |
|
--output_dir ./image-captioning-training-results \ |
|
--model_name_or_path model \ |
|
--dataset_name ydshieh/coco_dataset_script \ |
|
--dataset_config_name=2017 \ |
|
--data_dir $PWD/data \ |
|
--image_column image_path \ |
|
--caption_column caption \ |
|
--do_train --do_eval --predict_with_generate \ |
|
--num_train_epochs 1 \ |
|
--eval_steps 500 \ |
|
--learning_rate 3e-5 --warmup_steps 0 \ |
|
--per_device_train_batch_size 32 \ |
|
--per_device_eval_batch_size 32 \ |
|
--overwrite_output_dir \ |
|
--max_target_length 32 \ |
|
--num_beams 8 \ |
|
--preprocessing_num_workers 16 \ |
|
--logging_steps 10 \ |
|
--block_size 16384 \ |
|
--push_to_hub |
|
``` |
|
|
|
This should finish in about 1h30 on Cloud TPU, with validation loss and ROUGE2 score of 2.0153 and 14.64 respectively |
|
after 1 epoch. Training statistics can be accessed on [Models](https://huggingface.co/ydshieh/image-captioning-training-results/tensorboard). |
|
|