|
## Token classification |
|
|
|
Based on the scripts [`run_ner.py`](https://github.com/huggingface/transformers/blob/main/examples/legacy/token-classification/run_ner.py). |
|
|
|
The following examples are covered in this section: |
|
|
|
* NER on the GermEval 2014 (German NER) dataset |
|
* Emerging and Rare Entities task: WNUT’17 (English NER) dataset |
|
|
|
Details and results for the fine-tuning provided by @stefan-it. |
|
|
|
### GermEval 2014 (German NER) dataset |
|
|
|
#### Data (Download and pre-processing steps) |
|
|
|
Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page. |
|
|
|
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted: |
|
|
|
```bash |
|
curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \ |
|
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp |
|
curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \ |
|
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp |
|
curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \ |
|
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp |
|
``` |
|
|
|
The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. |
|
One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. |
|
The `preprocess.py` script located in the `scripts` folder a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached). |
|
|
|
Let's define some variables that we need for further pre-processing steps and training the model: |
|
|
|
```bash |
|
export MAX_LENGTH=128 |
|
export BERT_MODEL=bert-base-multilingual-cased |
|
``` |
|
|
|
Run the pre-processing script on training, dev and test datasets: |
|
|
|
```bash |
|
python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt |
|
python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt |
|
python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt |
|
``` |
|
|
|
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used: |
|
|
|
```bash |
|
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt |
|
``` |
|
|
|
#### Prepare the run |
|
|
|
Additional environment variables must be set: |
|
|
|
```bash |
|
export OUTPUT_DIR=germeval-model |
|
export BATCH_SIZE=32 |
|
export NUM_EPOCHS=3 |
|
export SAVE_STEPS=750 |
|
export SEED=1 |
|
``` |
|
|
|
#### Run the Pytorch version |
|
|
|
To start training, just run: |
|
|
|
```bash |
|
python3 run_ner.py --data_dir ./ \ |
|
--labels ./labels.txt \ |
|
--model_name_or_path $BERT_MODEL \ |
|
--output_dir $OUTPUT_DIR \ |
|
--max_seq_length $MAX_LENGTH \ |
|
--num_train_epochs $NUM_EPOCHS \ |
|
--per_device_train_batch_size $BATCH_SIZE \ |
|
--save_steps $SAVE_STEPS \ |
|
--seed $SEED \ |
|
--do_train \ |
|
--do_eval \ |
|
--do_predict |
|
``` |
|
|
|
If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets. |
|
|
|
#### JSON-based configuration file |
|
|
|
Instead of passing all parameters via commandline arguments, the `run_ner.py` script also supports reading parameters from a json-based configuration file: |
|
|
|
```json |
|
{ |
|
"data_dir": ".", |
|
"labels": "./labels.txt", |
|
"model_name_or_path": "bert-base-multilingual-cased", |
|
"output_dir": "germeval-model", |
|
"max_seq_length": 128, |
|
"num_train_epochs": 3, |
|
"per_device_train_batch_size": 32, |
|
"save_steps": 750, |
|
"seed": 1, |
|
"do_train": true, |
|
"do_eval": true, |
|
"do_predict": true |
|
} |
|
``` |
|
|
|
It must be saved with a `.json` extension and can be used by running `python3 run_ner.py config.json`. |
|
|
|
#### Evaluation |
|
|
|
Evaluation on development dataset outputs the following for our example: |
|
|
|
```bash |
|
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results ***** |
|
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146 |
|
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543 |
|
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111 |
|
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806 |
|
``` |
|
|
|
On the test dataset the following results could be achieved: |
|
|
|
```bash |
|
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results ***** |
|
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803 |
|
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782 |
|
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697 |
|
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085 |
|
``` |
|
|
|
#### Run the Tensorflow 2 version |
|
|
|
To start training, just run: |
|
|
|
```bash |
|
python3 run_tf_ner.py --data_dir ./ \ |
|
--labels ./labels.txt \ |
|
--model_name_or_path $BERT_MODEL \ |
|
--output_dir $OUTPUT_DIR \ |
|
--max_seq_length $MAX_LENGTH \ |
|
--num_train_epochs $NUM_EPOCHS \ |
|
--per_device_train_batch_size $BATCH_SIZE \ |
|
--save_steps $SAVE_STEPS \ |
|
--seed $SEED \ |
|
--do_train \ |
|
--do_eval \ |
|
--do_predict |
|
``` |
|
|
|
Such as the Pytorch version, if your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets. |
|
|
|
#### Evaluation |
|
|
|
Evaluation on development dataset outputs the following for our example: |
|
```bash |
|
precision recall f1-score support |
|
|
|
LOCderiv 0.7619 0.6154 0.6809 52 |
|
PERpart 0.8724 0.8997 0.8858 4057 |
|
OTHpart 0.9360 0.9466 0.9413 711 |
|
ORGpart 0.7015 0.6989 0.7002 269 |
|
LOCpart 0.7668 0.8488 0.8057 496 |
|
LOC 0.8745 0.9191 0.8963 235 |
|
ORGderiv 0.7723 0.8571 0.8125 91 |
|
OTHderiv 0.4800 0.6667 0.5581 18 |
|
OTH 0.5789 0.6875 0.6286 16 |
|
PERderiv 0.5385 0.3889 0.4516 18 |
|
PER 0.5000 0.5000 0.5000 2 |
|
ORG 0.0000 0.0000 0.0000 3 |
|
|
|
micro avg 0.8574 0.8862 0.8715 5968 |
|
macro avg 0.8575 0.8862 0.8713 5968 |
|
``` |
|
|
|
On the test dataset the following results could be achieved: |
|
```bash |
|
precision recall f1-score support |
|
|
|
PERpart 0.8847 0.8944 0.8896 9397 |
|
OTHpart 0.9376 0.9353 0.9365 1639 |
|
ORGpart 0.7307 0.7044 0.7173 697 |
|
LOC 0.9133 0.9394 0.9262 561 |
|
LOCpart 0.8058 0.8157 0.8107 1150 |
|
ORG 0.0000 0.0000 0.0000 8 |
|
OTHderiv 0.5882 0.4762 0.5263 42 |
|
PERderiv 0.6571 0.5227 0.5823 44 |
|
OTH 0.4906 0.6667 0.5652 39 |
|
ORGderiv 0.7016 0.7791 0.7383 172 |
|
LOCderiv 0.8256 0.6514 0.7282 109 |
|
PER 0.0000 0.0000 0.0000 11 |
|
|
|
micro avg 0.8722 0.8774 0.8748 13869 |
|
macro avg 0.8712 0.8774 0.8740 13869 |
|
``` |
|
|
|
### Emerging and Rare Entities task: WNUT’17 (English NER) dataset |
|
|
|
Description of the WNUT’17 task from the [shared task website](http://noisy-text.github.io/2017/index.html): |
|
|
|
> The WNUT’17 shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. |
|
> Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on |
|
> them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. |
|
|
|
Six labels are available in the dataset. An overview can be found on this [page](http://noisy-text.github.io/2017/files/). |
|
|
|
#### Data (Download and pre-processing steps) |
|
|
|
The dataset can be downloaded from the [official GitHub](https://github.com/leondz/emerging_entities_17) repository. |
|
|
|
The following commands show how to prepare the dataset for fine-tuning: |
|
|
|
```bash |
|
mkdir -p data_wnut_17 |
|
|
|
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/wnut17train.conll' | tr '\t' ' ' > data_wnut_17/train.txt.tmp |
|
curl -L 'https://github.com/leondz/emerging_entities_17/raw/master/emerging.dev.conll' | tr '\t' ' ' > data_wnut_17/dev.txt.tmp |
|
curl -L 'https://raw.githubusercontent.com/leondz/emerging_entities_17/master/emerging.test.annotated' | tr '\t' ' ' > data_wnut_17/test.txt.tmp |
|
``` |
|
|
|
Let's define some variables that we need for further pre-processing steps: |
|
|
|
```bash |
|
export MAX_LENGTH=128 |
|
export BERT_MODEL=bert-large-cased |
|
``` |
|
|
|
Here we use the English BERT large model for fine-tuning. |
|
The `preprocess.py` scripts splits longer sentences into smaller ones (once the max. subtoken length is reached): |
|
|
|
```bash |
|
python3 scripts/preprocess.py data_wnut_17/train.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/train.txt |
|
python3 scripts/preprocess.py data_wnut_17/dev.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/dev.txt |
|
python3 scripts/preprocess.py data_wnut_17/test.txt.tmp $BERT_MODEL $MAX_LENGTH > data_wnut_17/test.txt |
|
``` |
|
|
|
In the last pre-processing step, the `labels.txt` file needs to be generated. This file contains all available labels: |
|
|
|
```bash |
|
cat data_wnut_17/train.txt data_wnut_17/dev.txt data_wnut_17/test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > data_wnut_17/labels.txt |
|
``` |
|
|
|
#### Run the Pytorch version |
|
|
|
Fine-tuning with the PyTorch version can be started using the `run_ner.py` script. In this example we use a JSON-based configuration file. |
|
|
|
This configuration file looks like: |
|
|
|
```json |
|
{ |
|
"data_dir": "./data_wnut_17", |
|
"labels": "./data_wnut_17/labels.txt", |
|
"model_name_or_path": "bert-large-cased", |
|
"output_dir": "wnut-17-model-1", |
|
"max_seq_length": 128, |
|
"num_train_epochs": 3, |
|
"per_device_train_batch_size": 32, |
|
"save_steps": 425, |
|
"seed": 1, |
|
"do_train": true, |
|
"do_eval": true, |
|
"do_predict": true, |
|
"fp16": false |
|
} |
|
``` |
|
|
|
If your GPU supports half-precision training, please set `fp16` to `true`. |
|
|
|
Save this JSON-based configuration under `wnut_17.json`. The fine-tuning can be started with `python3 run_ner_old.py wnut_17.json`. |
|
|
|
#### Evaluation |
|
|
|
Evaluation on development dataset outputs the following: |
|
|
|
```bash |
|
05/29/2020 23:33:44 - INFO - __main__ - ***** Eval results ***** |
|
05/29/2020 23:33:44 - INFO - __main__ - eval_loss = 0.26505235286212275 |
|
05/29/2020 23:33:44 - INFO - __main__ - eval_precision = 0.7008264462809918 |
|
05/29/2020 23:33:44 - INFO - __main__ - eval_recall = 0.507177033492823 |
|
05/29/2020 23:33:44 - INFO - __main__ - eval_f1 = 0.5884802220680084 |
|
05/29/2020 23:33:44 - INFO - __main__ - epoch = 3.0 |
|
``` |
|
|
|
On the test dataset the following results could be achieved: |
|
|
|
```bash |
|
05/29/2020 23:33:44 - INFO - transformers.trainer - ***** Running Prediction ***** |
|
05/29/2020 23:34:02 - INFO - __main__ - eval_loss = 0.30948806500973547 |
|
05/29/2020 23:34:02 - INFO - __main__ - eval_precision = 0.5840108401084011 |
|
05/29/2020 23:34:02 - INFO - __main__ - eval_recall = 0.3994439295644115 |
|
05/29/2020 23:34:02 - INFO - __main__ - eval_f1 = 0.47440836543753434 |
|
``` |
|
|
|
WNUT’17 is a very difficult task. Current state-of-the-art results on this dataset can be found [here](https://nlpprogress.com/english/named_entity_recognition.html). |
|
|