File size: 26,144 Bytes
3135249 15d4aba 3135249 589f072 3135249 589f072 3135249 15d4aba 3135249 15d4aba 3135249 15d4aba 3135249 15d4aba 3135249 15d4aba 589f072 3135249 15d4aba 3135249 589f072 3135249 589f072 3135249 589f072 88cddfc 589f072 e4a326b 3135249 838659c 77887eb 838659c 77887eb 838659c 77887eb 838659c 3135249 6929c7e 77887eb 3135249 589f072 3135249 589f072 3135249 2ccebdf 3135249 4cae9bd 3135249 15d4aba 3135249 15d4aba 3135249 589f072 3135249 77887eb e4a326b 589f072 77887eb 3135249 589f072 3135249 589f072 3135249 cbf0b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
import os
import PyPDF2
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from docx import Document
import matplotlib.pyplot as plt
import io
import base64
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.application import MIMEApplication
import smtplib
from fpdf import FPDF
import getpass
import pandas as pd
import seaborn as sns
import requests
from bs4 import BeautifulSoup
# Load environment variables from .env file
load_dotenv()
# Check if the GROQ_API_KEY is in the environment variables
if not os.environ.get("GROQ_API_KEY"):
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")
# Initialize the model
model = ChatGroq(model="llama-3.1-8b-instant", api_key=os.environ.get("GROQ_API_KEY"))
# Custom CSS for improved aesthetics
st.markdown(
"""
<style>
.main {
background-color: #f0f2f5;
}
.sidebar .sidebar-content {
background-color: #ffffff;
}
h1 {
color: #2C3E50;
}
h2 {
color: #2980B9;
}
.stButton button {
background-color: #2980B9;
color: white;
border: None;
border-radius: 5px;
padding: 10px;
}
</style>
""",
unsafe_allow_html=True
)
# Function to read PDF content
def read_pdf(file):
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
# Function to extract text from DOCX files
def extract_text_from_docx(file):
doc = Document(file)
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
return text
# Function to preprocess text
def preprocess_text(text):
return " ".join(text.replace("\n", " ").replace("\r", " ").split())
# Function to chunk large text into smaller parts
def chunk_text(text, max_tokens=2000):
chunks = []
current_chunk = []
current_length = 0
for sentence in text.split(". "):
sentence_length = len(sentence.split())
if current_length + sentence_length <= max_tokens:
current_chunk.append(sentence)
current_length += sentence_length
else:
chunks.append(". ".join(current_chunk))
current_chunk = [sentence]
current_length = sentence_length
if current_chunk:
chunks.append(". ".join(current_chunk))
return chunks
# Function to generate summary for each chunk
def generate_summary(text):
prompt = f"Please summarize the following content:\n\n{text}"
try:
response = model.invoke(prompt)
if hasattr(response, 'content'):
summary = response.content
else:
summary = str(response)
return summary.strip() if summary else "No summary available."
except Exception as e:
st.error(f"Error generating summary: {str(e)}")
return None
# Function to summarize large texts
def summarize_large_text(text, chunk_limit=5000):
chunks = chunk_text(text, max_tokens=chunk_limit)
summaries = []
for chunk in chunks:
summary = generate_summary(chunk)
if summary:
summaries.append(summary)
return " ".join(summaries)
# Function to detect key clauses
def detect_key_clauses(text):
key_clauses = [
{"clause": "confidentiality", "summary": "Confidentiality clauses ensure that sensitive information remains protected."},
{"clause": "liability", "summary": "Liability clauses outline the responsibility for damages or losses incurred."},
{"clause": "termination", "summary": "Termination clauses specify the conditions under which a contract may be ended."},
{"clause": "force majeure", "summary": "Force majeure clauses excuse parties from performance obligations due to unforeseen events."},
{"clause": "governing law", "summary": "Governing law clauses specify which jurisdiction's laws will govern the contract."},
{"clause": "dispute resolution", "summary": "Dispute resolution clauses specify how conflicts between parties will be resolved."},
{"clause": "amendment", "summary": "Amendment clauses outline the process for changing the terms of the contract."},
{"clause": "warranty", "summary": "Warranty clauses provide assurances regarding the quality or condition of goods or services."},
]
detected_clauses = []
for clause in key_clauses:
if clause["clause"].lower() in text.lower():
clause_start = text.lower().find(clause["clause"].lower())
context = text[clause_start - 50: clause_start + 200]
explanation = f"The document mentions '{clause['clause']}' clause. Context: {context.strip()}..."
detected_clauses.append({
"clause": clause["clause"].capitalize(),
"summary": clause["summary"],
"explanation": explanation
})
return detected_clauses
# Function to detect hidden obligations or dependencies
def detect_hidden_obligations_or_dependencies(text, summary):
hidden_obligations = [
{"phrase": "dependent upon", "summary": "This suggests that some action is conditional upon another."},
{"phrase": "if", "summary": "This indicates that certain conditions must be met to fulfill the obligation."},
{"phrase": "may be required", "summary": "Implies that the party could be obligated to perform an action under specific conditions."},
{"phrase": "should", "summary": "Implies a recommendation or requirement, though not explicitly mandatory."},
{"phrase": "obligated to", "summary": "Indicates a clear, binding duty to perform an action."},
]
hidden_dependencies = []
for item in hidden_obligations:
if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
phrase_start = text.lower().find(item["phrase"].lower())
context = text[phrase_start - 50: phrase_start + 200]
hidden_dependencies.append({
"phrase": item["phrase"],
"summary": item["summary"],
"context": context.strip()
})
return hidden_dependencies
# Function to answer questions about the document
def answer_question(question, document_text):
prompt = f"The following is a legal document:\n\n{document_text}\n\nBased on this document, answer the following question: {question}"
try:
response = model.invoke(prompt)
if hasattr(response, 'content'):
answer = response.content
else:
answer = str(response)
return answer.strip() if answer else "No answer available."
except Exception as e:
st.error(f"Error answering question: {str(e)}")
return None
# Function to detect risks in the text
def detect_risks(text, summary):
risk_phrases = [
{"phrase": "penalty", "summary": "This indicates financial or legal consequences.", "risk_level": "High"},
{"phrase": "liability", "summary": "This suggests potential financial responsibility.", "risk_level": "Medium"},
{"phrase": "default", "summary": "This can lead to serious legal consequences.", "risk_level": "High"},
{"phrase": "breach", "summary": "This may expose the party to significant penalties.", "risk_level": "High"},
{"phrase": "suspension", "summary": "This indicates risks of halting services.", "risk_level": "Medium"},
{"phrase": "should", "summary": "This implies a recommendation, which may not be mandatory.", "risk_level": "Low"},
{"phrase": "may be required", "summary": "This suggests that obligations could exist under certain conditions.", "risk_level": "Low"},
{"phrase": "indemnify", "summary": "This entails a duty to compensate for harm or loss, indicating potential financial risk.", "risk_level": "High"},
{"phrase": "termination for cause", "summary": "This indicates a risk of ending the contract due to specific failures.", "risk_level": "High"},
{"phrase": "compliance", "summary": "Non-compliance with regulations can lead to legal penalties.", "risk_level": "High"},
]
detected_risks = []
for item in risk_phrases:
if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
phrase_start = text.lower().find(item["phrase"].lower())
context = text[phrase_start - 50: phrase_start + 200]
detected_risks.append({
"phrase": item["phrase"],
"summary": item["summary"],
"context": context.strip(),
"risk_level": item["risk_level"]
})
return detected_risks
# Function to calculate overall risk score
def calculate_overall_risk_score(detected_risks):
risk_scores = {
"High": 3,
"Medium": 2,
"Low": 1
}
total_score = sum(risk_scores.get(risk['risk_level'], 0) for risk in detected_risks)
return total_score
# Function to plot risk assessment matrix
def plot_risk_assessment_matrix(detected_risks):
likelihood = []
impact = []
for risk in detected_risks:
if risk['risk_level'] == 'High':
likelihood.append(3)
impact.append(3)
elif risk['risk_level'] == 'Medium':
likelihood.append(2)
impact.append(2)
elif risk['risk_level'] == 'Low':
likelihood.append(1)
impact.append(1)
fig, ax = plt.subplots(figsize=(6, 6))
scatter = ax.scatter(likelihood, impact, alpha=0.6)
ax.set_xticks([1, 2, 3])
ax.set_yticks([1, 2, 3])
ax.set_xticklabels(['Low', 'Medium', 'High'])
ax.set_yticklabels(['Low', 'Medium', 'High'])
ax.set_xlabel('Likelihood')
ax.set_ylabel('Impact')
ax.set_title('Risk Assessment Matrix')
for i in range(len(detected_risks)):
ax.annotate(detected_risks[i]['phrase'], (likelihood[i], impact[i]))
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
# Function to plot risk level distribution pie chart
def plot_risk_level_distribution(detected_risks):
risk_levels = [risk['risk_level'] for risk in detected_risks]
level_counts = {level: risk_levels.count(level) for level in set(risk_levels)}
fig, ax = plt.subplots(figsize=(4, 3))
ax.pie(level_counts.values(), labels=level_counts.keys(), autopct='%1.1f%%', startangle=90)
ax.axis('equal')
plt.title("Risk Level Distribution", fontsize=10)
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
# Function to plot risks by type bar chart
def plot_risks_by_type(detected_risks):
risk_phrases = [risk['phrase'] for risk in detected_risks]
phrase_counts = {phrase: risk_phrases.count(phrase) for phrase in set(risk_phrases)}
fig, ax = plt.subplots(figsize=(4, 3))
ax.bar(phrase_counts.keys(), phrase_counts.values(), color='lightcoral')
plt.xticks(rotation=45, ha='right')
ax.set_title("Risks by Type", fontsize=10)
ax.set_ylabel("Count")
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
# Function to plot stacked bar chart of risks by level
def plot_stacked_bar_chart(detected_risks):
risk_levels = ['High', 'Medium', 'Low']
level_counts = {level: 0 for level in risk_levels}
for risk in detected_risks:
level_counts[risk['risk_level']] += 1
fig, ax = plt.subplots(figsize=(4, 3))
ax.bar(level_counts.keys(), level_counts.values(), color=['#ff9999', '#66b3ff', '#99ff99'])
ax.set_title("Stacked Bar Chart of Risks by Level", fontsize=10)
ax.set_ylabel("Count")
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
# Function to plot risk heatmap
def plot_risk_heatmap(detected_risks):
risk_data = {'Risk Level': [], 'Count': []}
for risk in detected_risks:
risk_data['Risk Level'].append(risk['risk_level'])
risk_data['Count'].append(1)
df = pd.DataFrame(risk_data)
heatmap_data = df.groupby('Risk Level').count().reset_index()
fig, ax = plt.subplots(figsize=(4, 3))
sns.heatmap(heatmap_data.pivot_table(index='Risk Level', values='Count'), annot=True, cmap='YlGnBu', ax=ax)
ax.set_title("Risk Heatmap")
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
# Function to convert base64 to image
def base64_to_image(data):
return io.BytesIO(base64.b64decode(data))
# Function to generate PDF document with improved aesthetics
def generate_pdf_analysis(document_text, summary, detected_clauses, hidden_obligations, detected_risks, risk_assessment_matrix, risk_level_distribution, risks_by_type, stacked_bar_chart, risk_heatmap):
pdf = FPDF()
pdf.add_page()
# Set page borders
pdf.set_draw_color(0, 0, 0)
pdf.rect(5, 5, 200, 287)
# Add Arial font
pdf.add_font("Arial", "", "arial.ttf", uni=True)
pdf.set_font("Arial", size=12)
# Title
pdf.set_font("Arial", 'B', 16)
pdf.cell(0, 10, 'Legal Document Analysis Report', ln=True, align='C')
pdf.ln(10)
# Executive Summary
pdf.set_font("Arial", 'B', 14)
pdf.cell(0, 10, 'Executive Summary', ln=True)
pdf.set_font("Arial", '', 12)
pdf.multi_cell(0, 10, summary)
pdf.ln(10)
# Risks Section
pdf.set_font("Arial", 'B', 14)
pdf.cell(0, 10, 'Risk Analysis', ln=True)
pdf.set_font("Arial", '', 12)
for risk in detected_risks:
pdf.cell(0, 10, f"{risk['phrase']}: {risk['summary']} (Risk Level: {risk['risk_level']})", ln=True)
pdf.ln(10)
# Save images temporarily and add them to the PDF
def save_base64_image(image_str, filename):
with open(filename, "wb") as img_file:
img_file.write(base64.b64decode(image_str))
# Save images
image_filenames = [
"risk_assessment_matrix.png",
"risk_level_distribution.png",
"risks_by_type.png",
"stacked_bar_chart.png",
"risk_heatmap.png"
]
images = [risk_assessment_matrix, risk_level_distribution, risks_by_type, stacked_bar_chart, risk_heatmap]
for img_str, filename in zip(images, image_filenames):
save_base64_image(img_str, filename)
pdf.image(filename, x=10, y=pdf.get_y(), w=90) # Use the saved image file
pdf.ln(10)
# Save PDF to a temporary file
temp_pdf_path = "legal_document_analysis.pdf"
pdf.output(temp_pdf_path, 'F')
# Load the PDF into a BytesIO object
with open(temp_pdf_path, "rb") as f:
pdf_buffer = io.BytesIO(f.read())
# Optionally, delete the temporary file
os.remove(temp_pdf_path)
return pdf_buffer
# Function to handle chatbot interaction
def chatbot_query(user_input):
try:
response = model({"text": user_input})
if isinstance(response, dict) and 'text' in response:
return response['text']
else:
return "Error: Unexpected response format."
except Exception as e:
return f"Error: {str(e)}"
# Function to generate suggestions for improvement
def generate_suggestions(text):
suggestions = []
if "shall" in text.lower():
suggestions.append("Consider replacing 'shall' with 'must' for clarity.")
if "may" in text.lower():
suggestions.append("Clarify the conditions under which actions 'may' be taken.")
if "if" in text.lower() and "then" not in text.lower():
suggestions.append("Ensure conditional statements are clear and complete.")
if "not" in text.lower():
suggestions.append("Review negative clauses to ensure they are not overly restrictive.")
return suggestions
# Function to send feedback via email
def send_feedback(feedback_content):
sender_email = os.getenv("SENDER_EMAIL")
receiver_email = os.getenv("FEEDBACK_EMAIL")
password = os.getenv("EMAIL_PASS")
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = receiver_email
msg['Subject'] = "User Feedback on Legal Document Analysis"
msg.attach(MIMEText(feedback_content, 'plain'))
try:
with smtplib.SMTP('smtp.gmail.com', 587) as server:
server.starttls()
server.login(sender_email, password)
server.send_message(msg)
return True
except Exception as e:
return False
# Function to send PDF via email
def send_pdf_via_email(pdf_buffer, recipient_email):
sender_email = os.getenv("SENDER_EMAIL")
password = os.getenv("EMAIL_PASS")
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = recipient_email
msg['Subject'] = "Legal Document Analysis PDF"
msg.attach(MIMEText("Please find the attached analysis of your legal document.", 'plain'))
# Attach the PDF
pdf_attachment = io.BytesIO()
pdf_buffer.seek(0)
pdf_attachment.write(pdf_buffer.read())
pdf_attachment.seek(0)
part = MIMEApplication(pdf_attachment.read(), Name='legal_document_analysis.pdf')
part['Content-Disposition'] = 'attachment; filename="legal_document_analysis.pdf"'
msg.attach(part)
try:
with smtplib.SMTP('smtp.gmail.com', 587) as server:
server.starttls()
server.login(sender_email, password)
server.send_message(msg)
return True
except Exception as e:
return False
# Function to simulate tracking updates in the document
def track_updates(document_text):
updates = [
{"update": "Updated confidentiality clause.", "suggestion": "Consider specifying the duration of confidentiality."},
{"update": "Revised liability limits.", "suggestion": "Ensure the limits are realistic and compliant with regulations."},
{"update": "Clarified termination conditions.", "suggestion": "Check if all potential termination scenarios are covered."},
]
return updates
# Function to get suggestion from Groq API based on the update
def get_update_suggestion(update):
prompt = f"Suggest improvements or updates for this legal clause: {update}"
suggestion = generate_summary(prompt)
return suggestion if suggestion else "No suggestion available."
# Function to display feedback form
def display_feedback_form():
st.subheader("Feedback Form")
feedback = st.text_area("Please provide your feedback or suggestions:")
question1 = st.radio("How would you rate the analysis?", ("Excellent", "Good", "Fair", "Poor"))
question2 = st.radio("Would you recommend this tool to others?", ("Yes", "No"))
if st.button("Submit Feedback"):
feedback_content = f"Feedback: {feedback}\nRating: {question1}\nRecommendation: {question2}"
if send_feedback(feedback_content):
st.success("Thank you for your feedback! It has been sent.")
else:
st.error("Failed to send feedback. Please try again later.")
# Main function to display the legal analysis page
def display_legal_analysis_page():
st.title("๐ Advanced AI-Driven Legal Document Summarization and Risk Assessment")
uploaded_file = st.file_uploader("Upload your legal document (PDF or DOCX)", type=["pdf", "docx"])
if uploaded_file:
if uploaded_file.name.endswith(".pdf"):
document_text = preprocess_text(read_pdf(uploaded_file))
elif uploaded_file.name.endswith(".docx"):
document_text = preprocess_text(extract_text_from_docx(uploaded_file))
else:
st.error("Unsupported file type!")
return
tabs = st.tabs(["๐ Document Text", "๐ Summary", "๐ Key Clauses", "๐ Hidden Obligations", "โ Risk Analysis", "๐ก Suggestions & Chatbot", "๐ document update"])
with tabs[0]:
st.subheader("Document Text")
st.write(document_text)
with tabs[1]:
st.subheader("Summary")
summary = summarize_large_text(document_text)
st.write(summary)
with tabs[2]:
st.subheader("Key Clauses Identified")
detected_clauses = detect_key_clauses(document_text)
if detected_clauses:
for clause in detected_clauses:
with st.expander(clause['clause'], expanded=False):
st.write(f"*Summary:* {clause['summary']}")
st.write(f"*Context:* {clause['explanation']}")
else:
st.write("No key clauses detected.")
with tabs[3]:
st.subheader("Hidden Obligations and Dependencies")
hidden_obligations = detect_hidden_obligations_or_dependencies(document_text, summary)
if hidden_obligations:
for obligation in hidden_obligations:
st.write(f"{obligation['phrase']}: {obligation['summary']}")
st.write(obligation['context'])
else:
st.write("No hidden obligations detected.")
with tabs[4]:
st.subheader("Risk Analysis")
detected_risks = detect_risks(document_text, summary)
overall_risk_score = calculate_overall_risk_score(detected_risks)
st.write(f"*Overall Risk Score:* {overall_risk_score}")
if detected_risks:
for risk in detected_risks:
with st.expander(risk['phrase'], expanded=False):
st.write(f"*Summary:* {risk['summary']} (Risk Level: {risk['risk_level']})")
short_context = risk['context'].strip().split('. ')[0] + '.'
st.write(f"*Context:* {short_context}")
else:
st.write("No risks detected.")
# Generate all visualizations
risk_assessment_matrix = plot_risk_assessment_matrix(detected_risks)
risk_level_distribution = plot_risk_level_distribution(detected_risks)
risks_by_type = plot_risks_by_type(detected_risks)
stacked_bar_chart = plot_stacked_bar_chart(detected_risks)
risk_heatmap = plot_risk_heatmap(detected_risks)
# Display the charts
st.image(f"data:image/png;base64,{risk_assessment_matrix}", caption="Risk Assessment Matrix")
st.image(f"data:image/png;base64,{risk_level_distribution}", caption="Risk Level Distribution")
st.image(f"data:image/png;base64,{risks_by_type}", caption="Risks by Type")
st.image(f"data:image/png;base64,{stacked_bar_chart}", caption="Stacked Bar Chart of Risks by Level")
st.image(f"data:image/png;base64,{risk_heatmap}", caption="Risk Heatmap")
with tabs[5]:
st.subheader("Suggestions for Improvement")
suggestions = generate_suggestions(document_text)
for suggestion in suggestions:
st.write(f"- {suggestion}")
# Chatbot Tab
st.subheader("๐ค Chatbot")
question = st.text_input("Ask a question about the document:")
if question:
with st.spinner("Getting answer..."):
answer = answer_question(question, document_text)
if answer:
st.write(f"Answer: {answer}")
else:
st.write("Sorry, I couldn't find an answer to thatย question.")
# Download PDF Analysis Button
st.subheader("Download Analysis as PDF")
pdf_buffer = generate_pdf_analysis(document_text, summary, detected_clauses, hidden_obligations, detected_risks, risk_assessment_matrix, risk_level_distribution, risks_by_type, stacked_bar_chart, risk_heatmap)
pdf_buffer.seek(0)
# Add download button for PDF
st.download_button(
label="Download PDF Analysis",
data=pdf_buffer,
file_name="legal_document_analysis.pdf",
mime="application/pdf"
)
# Input for recipient email
recipient_email = st.text_input("Enter your email address to receive the PDF:")
# Button to send PDF via email
if st.button("Send PDF Analysis"):
if recipient_email:
if send_pdf_via_email(pdf_buffer, recipient_email):
st.success("PDF has been sent successfully!")
else:
st.error("Failed to send PDF. Please try again.")
else:
st.warning("Please enter a valid email address.")
# Feedback Form Section
display_feedback_form()
with tabs[6]: # Update Tracker Tab
st.subheader("Document Updates")
updates = track_updates(document_text)
if st.button("Show Updates"):
if updates:
for update in updates:
with st.expander(update['update'], expanded=False):
suggestion = get_update_suggestion(update['update'])
st.write(f"*Suggestion:* {suggestion}")
# Additional functionality
if st.button(f"Mark '{update['update']}' as addressed"):
st.success(f"'{update['update']}' has been marked as addressed.")
else:
st.write("No updates detected.")
# Run the application
if __name__ == "__main__":
display_legal_analysis_page() |