Upload 8 files
Browse files- .env +6 -0
- Update_tracking.py +169 -0
- app.py +17 -0
- arial.ttf +0 -0
- credentials.json +13 -0
- legal_document_analysis.py +636 -0
- rag_pipeline.py +76 -0
- requirements.txt +24 -0
.env
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 | |
2 |
+
EMAIL_PASSWORD=mwvm tluh heuy fowf
|
3 |
+
GROQ_API_KEY=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
|
4 | |
5 | |
6 |
+
EMAIL_PASS=mwvm tluh heuy fowf
|
Update_tracking.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import time
|
4 |
+
import streamlit as st
|
5 |
+
import threading
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import smtplib
|
8 |
+
from email.message import EmailMessage
|
9 |
+
import os
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from google.oauth2.service_account import Credentials
|
12 |
+
from googleapiclient.discovery import build
|
13 |
+
|
14 |
+
# Load environment variables from .env file
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Google Sheets Configuration
|
18 |
+
SHEET_ID = '1bZjlA-UJrBhWS2jHlEQ-7nbmDvxpEoKylgxHW51Hhzc' # Google Sheets ID
|
19 |
+
RANGE = 'Sheet1!A:D' # The range where you want to append the data
|
20 |
+
|
21 |
+
# Predefined list of URLs to track
|
22 |
+
TRACKING_URLS = [
|
23 |
+
"https://gdpr-info.eu/recitals/no-1/"]
|
24 |
+
|
25 |
+
# Event to signal thread termination
|
26 |
+
stop_event = threading.Event()
|
27 |
+
|
28 |
+
# Authenticate Google Sheets API
|
29 |
+
def authenticate_google_sheets():
|
30 |
+
creds = Credentials.from_service_account_file(
|
31 |
+
'Credentials.json',
|
32 |
+
scopes=['https://www.googleapis.com/auth/spreadsheets']
|
33 |
+
)
|
34 |
+
service = build('sheets', 'v4', credentials=creds)
|
35 |
+
return service
|
36 |
+
|
37 |
+
# Append data to Google Sheets
|
38 |
+
def append_to_google_sheets(service, url, title, content, timestamp):
|
39 |
+
values = [
|
40 |
+
[url, title, content[:200], timestamp] # Prepare row to append
|
41 |
+
]
|
42 |
+
body = {'values': values}
|
43 |
+
try:
|
44 |
+
service.spreadsheets().values().append(
|
45 |
+
spreadsheetId=SHEET_ID,
|
46 |
+
range=RANGE,
|
47 |
+
valueInputOption="RAW",
|
48 |
+
body=body
|
49 |
+
).execute()
|
50 |
+
st.write(f"Data appended to Google Sheets at {timestamp}.")
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"Error appending to Google Sheets: {e}")
|
53 |
+
|
54 |
+
# Send email notification
|
55 |
+
def send_email_notification(to_email, url, title, content, timestamp):
|
56 |
+
sender_email = os.getenv("EMAIL_ADDRESS")
|
57 |
+
sender_password = os.getenv("EMAIL_PASSWORD")
|
58 |
+
smtp_server = "smtp.gmail.com"
|
59 |
+
smtp_port = 587
|
60 |
+
|
61 |
+
if not sender_email or not sender_password:
|
62 |
+
st.error("Environment variables not loaded. Check your .env file.")
|
63 |
+
return
|
64 |
+
|
65 |
+
msg = EmailMessage()
|
66 |
+
msg["Subject"] = f"Website Update Notification for {url}"
|
67 |
+
msg["From"] = sender_email
|
68 |
+
msg["To"] = to_email
|
69 |
+
msg.set_content(f"""
|
70 |
+
Website: {url}
|
71 |
+
Title: {title}
|
72 |
+
Content (preview): {content[:200]}...
|
73 |
+
Tracked at: {timestamp}
|
74 |
+
""")
|
75 |
+
|
76 |
+
try:
|
77 |
+
with smtplib.SMTP(smtp_server, smtp_port) as server:
|
78 |
+
server.starttls()
|
79 |
+
server.login(sender_email, sender_password)
|
80 |
+
server.send_message(msg)
|
81 |
+
st.success(f"Notification email sent to {to_email}")
|
82 |
+
except smtplib.SMTPException as e:
|
83 |
+
st.error(f"SMTP Error: {e}")
|
84 |
+
|
85 |
+
# Fetch website data
|
86 |
+
def fetch_website_data(url):
|
87 |
+
try:
|
88 |
+
response = requests.get(url, timeout=10)
|
89 |
+
response.raise_for_status()
|
90 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
91 |
+
title = soup.title.string.strip() if soup.title else 'No title available'
|
92 |
+
paragraphs = soup.find_all('p')
|
93 |
+
content = ' '.join([p.text.strip() for p in paragraphs]) if paragraphs else 'New Notification available'
|
94 |
+
return title, content
|
95 |
+
except requests.exceptions.RequestException as e:
|
96 |
+
st.error(f"Error fetching website data: {e}")
|
97 |
+
return "Error occurred", "New notification detected. No content available due to an error."
|
98 |
+
|
99 |
+
# Track websites and store updates in Google Sheets
|
100 |
+
def track_websites(urls, recipient_email, interval=60, max_duration=20*60):
|
101 |
+
st.write(f"Started tracking for {recipient_email}")
|
102 |
+
service = authenticate_google_sheets()
|
103 |
+
last_updates = {} # To track changes in website content
|
104 |
+
|
105 |
+
start_time = datetime.now() # Record the start time
|
106 |
+
end_time = start_time + timedelta(seconds=max_duration) # Set end time (20 minutes later)
|
107 |
+
|
108 |
+
while not stop_event.is_set() and datetime.now() < end_time:
|
109 |
+
for url in urls:
|
110 |
+
title, content = fetch_website_data(url)
|
111 |
+
if title and content:
|
112 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
113 |
+
|
114 |
+
# Check for updates
|
115 |
+
if url not in last_updates or last_updates[url] != (title, content):
|
116 |
+
last_updates[url] = (title, content)
|
117 |
+
|
118 |
+
# Append to Google Sheets
|
119 |
+
append_to_google_sheets(service, url, title, content, timestamp)
|
120 |
+
|
121 |
+
# Send notification email
|
122 |
+
try:
|
123 |
+
send_email_notification(recipient_email, url, title, content, timestamp)
|
124 |
+
except Exception as e:
|
125 |
+
st.error(f"Error sending email notification: {e}")
|
126 |
+
|
127 |
+
# Wait for the next interval or until stop_event is set
|
128 |
+
stop_event.wait(interval)
|
129 |
+
|
130 |
+
st.write("Stopped tracking after 20 minutes.")
|
131 |
+
|
132 |
+
# Display tracking status
|
133 |
+
def display_tracking_status():
|
134 |
+
st.title("Update Tracking System with Notifications")
|
135 |
+
|
136 |
+
email_input = st.text_input("Enter your email for notifications:")
|
137 |
+
|
138 |
+
# Maintain thread state
|
139 |
+
if "tracking_thread" not in st.session_state:
|
140 |
+
st.session_state["tracking_thread"] = None
|
141 |
+
|
142 |
+
if email_input:
|
143 |
+
# Start tracking
|
144 |
+
if st.button("Tracking"):
|
145 |
+
if st.session_state["tracking_thread"] is None or not st.session_state["tracking_thread"].is_alive():
|
146 |
+
stop_event.clear() # Clear the stop flag to allow tracking
|
147 |
+
thread = threading.Thread(target=track_websites, args=(TRACKING_URLS, email_input), daemon=True)
|
148 |
+
thread.start()
|
149 |
+
st.session_state["tracking_thread"] = thread
|
150 |
+
st.success(f"Notifications will be sent to {email_input}.")
|
151 |
+
else:
|
152 |
+
st.warning("Tracking Updates is already running.")
|
153 |
+
|
154 |
+
# Stop tracking
|
155 |
+
if st.button("Stop Tracking"):
|
156 |
+
if st.session_state["tracking_thread"] is not None and st.session_state["tracking_thread"].is_alive():
|
157 |
+
stop_event.set() # Signal the thread to stop
|
158 |
+
st.session_state["tracking_thread"].join() # Wait for the thread to finish
|
159 |
+
st.session_state["tracking_thread"] = None
|
160 |
+
st.success("Tracking stopped.")
|
161 |
+
else:
|
162 |
+
st.warning("No active tracking to stop.")
|
163 |
+
|
164 |
+
# Main function
|
165 |
+
def main():
|
166 |
+
display_tracking_status()
|
167 |
+
|
168 |
+
if __name__ == "__main__":
|
169 |
+
main()
|
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import Update_tracking
|
3 |
+
import legal_document_analysis
|
4 |
+
from rag_pipeline import extract_text_from_pdf, create_vector_store, create_qa_pipeline
|
5 |
+
|
6 |
+
# Streamlit App Navigation
|
7 |
+
def main():
|
8 |
+
st.sidebar.title("Navigation")
|
9 |
+
page = st.sidebar.radio("Choose a page", ["Update Tracking", "Legal Document Analysis"])
|
10 |
+
|
11 |
+
if page == "Update Tracking":
|
12 |
+
Update_tracking.display_tracking_status() # Ensure the correct function name
|
13 |
+
elif page == "Legal Document Analysis":
|
14 |
+
legal_document_analysis.display_legal_analysis_page()
|
15 |
+
|
16 |
+
if __name__ == "__main__":
|
17 |
+
main()
|
arial.ttf
ADDED
Binary file (915 kB). View file
|
|
credentials.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "service_account",
|
3 |
+
"project_id": "graphite-setup-448304-u1",
|
4 |
+
"private_key_id": "c745314b1cd8b8a135a10c4819dabdb0d3d9a552",
|
5 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDKKXcJFGxBxdan\nBPI+M1js/YcBI3646efu1U88oWG7CrZDYEs6ZMTx46mdsgaiJ3LCmt6NRI691rdt\nOl2rh3KZ/rMLQXyyQvMfePwk4t1f/MFbHK75pD+nUWsUlbXawnGfZXRJxV9gC0F8\nindrqRFXqfrJaCjsexW5WdKEt5FAb4OSRSEAEzO6AC7VOAnME+ctOvzI8pg8Cuaw\nkJf8/0fTN/1Fgmygmj3om16J3gYVmxvaTYjZnrM6hQhvHFvTCkoLYk4DSXhIBxce\nzD/qLgoqwFGjlhrveb8FXErzTXlulAed/R49HJnbSKsL+Nq2guthoYV/j3Bg+TZ4\ngwPdlWQxAgMBAAECggEAC/jb6eud1CDUWxCDzItzqhhDCx4YInkGsVoMTtvDSwWB\nwPh2SAtg7u7DtBkvg6GYrh3oDV9ooSUyuGsfEjoLn0NKROHAUdm9ZmkerIwLXmR8\namoG0jWoB99+WwoZKo7+ldkXI4nG4cwU2RxloVhyNJn2RkBvAP8yjIcdXJr25QUC\nqA7v+grCR2CcxBkbRXoh/BQ+4wJQjT12eW7ybYXgxJb8HK8fWcGWXv8ir+KPNOrL\nONMhUS8rHyJ3i/9i/uwMP61pqmKf5x1gBTM1h7Wr+8tTIbCsrv1D8DSwOqvHrgTb\nDzUDKmpZFBUD0xyKETR5r7xTpje1M/xcTQlOskllyQKBgQDmhxz3kcnEHN88J1Jq\nvCXD4+0pBF+tzNc9ZmSnu2W+EBq5mAMu7sDTGRZtj/GisyYgm8YMybGnh38IPh5f\nOM+dqcXOM68ARi1srkGXPbLOMksAALhx9NVkbAZvm8Y6wIw6S5V/SsRiW8dq0VTM\nW2ncwUfn9gV3jstdAokjsZTM2QKBgQDgf/l8AZO6MHl/lujz480HP1ye/bkxhPnZ\ndsyHJG7zKRjQsqa1Kj006mGVLtcaC+zhNxGpeLrBbK/+OzyiBuM5OX0UXeS8zfIp\nPkXliSNarWIncgTCEwrcZOe1HFhIYYfd8JKebpaMtPOGYs2ZaKALMNXLDAJv5kSe\nrB0y0nabGQKBgEBKLAzrDo7v0l3vRW/Y2ttfpFNNEfXha6GG/ck9XOl9ikZ6G2Eq\nWoJEu9mATE4okhiD+N62HSJwij/dOxEpQdVhdHXGOibka2Sk0EwCe+w/YGU2zjmR\nozVnXwAfPFBERJc5Xw7p5gzcNagXiwOW9tYG3SvWk729B///ZgmbS7k5AoGBAIWX\nwgeoDJe0duiVDgTsHzrb2qsGAylTnzZoOmeFJ7ztTMYMOaX+/7M4cl9LI1dtl0Wh\n9pGptUCbA9O+vmMQxDBuZF81TIOJ7jvawc9In1A7cvhUIj63BDSIm1WsC2DvIOHS\nYf2Dg3UxzOTAcOaEWxCtu9t7Rwv9tAHUG//9O/UpAoGBALNfN69s+vhpPX4Ioq3B\nyv0bAk3QU4NZHnX7d48eFbWSS5Hhbboo/T/0KPcOf7ynOptsLeV+HqLS/WLXsJ5J\npKw7mW7pb0VoLv+JokWeAtIc4c0Ft2EZtvb+6t3GcrrDJsFBshUdwblrP9sl6i2X\nYUd3Ck2TaXpXirfFdUgByhLl\n-----END PRIVATE KEY-----\n",
|
6 |
+
"client_email": "[email protected]",
|
7 |
+
"client_id": "105183693282963617063",
|
8 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
9 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
10 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
11 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/sheet-865%40graphite-setup-448304-u1.iam.gserviceaccount.com",
|
12 |
+
"universe_domain": "googleapis.com"
|
13 |
+
}
|
legal_document_analysis.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import PyPDF2
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
from docx import Document
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
from email.mime.multipart import MIMEMultipart
|
11 |
+
from email.mime.text import MIMEText
|
12 |
+
from email.mime.application import MIMEApplication
|
13 |
+
import smtplib
|
14 |
+
from fpdf import FPDF
|
15 |
+
import getpass
|
16 |
+
import pandas as pd
|
17 |
+
import seaborn as sns
|
18 |
+
|
19 |
+
# Load environment variables from .env file
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
# Check if the GROQ_API_KEY is in the environment variables
|
23 |
+
if not os.environ.get("GROQ_API_KEY"):
|
24 |
+
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")
|
25 |
+
|
26 |
+
# Initialize the model
|
27 |
+
model = ChatGroq(model="llama-3.1-8b-instant", api_key=os.environ.get("GROQ_API_KEY"))
|
28 |
+
|
29 |
+
# Custom CSS for improved aesthetics
|
30 |
+
st.markdown(
|
31 |
+
"""
|
32 |
+
<style>
|
33 |
+
.main {
|
34 |
+
background-color: #f0f2f5;
|
35 |
+
}
|
36 |
+
.sidebar .sidebar-content {
|
37 |
+
background-color: #ffffff;
|
38 |
+
}
|
39 |
+
h1 {
|
40 |
+
color: #2C3E50;
|
41 |
+
}
|
42 |
+
h2 {
|
43 |
+
color: #2980B9;
|
44 |
+
}
|
45 |
+
.stButton button {
|
46 |
+
background-color: #2980B9;
|
47 |
+
color: white;
|
48 |
+
border: None;
|
49 |
+
border-radius: 5px;
|
50 |
+
padding: 10px;
|
51 |
+
}
|
52 |
+
</style>
|
53 |
+
""",
|
54 |
+
unsafe_allow_html=True
|
55 |
+
)
|
56 |
+
|
57 |
+
# Function to read PDF content
|
58 |
+
def read_pdf(file):
|
59 |
+
reader = PyPDF2.PdfReader(file)
|
60 |
+
text = ""
|
61 |
+
for page in reader.pages:
|
62 |
+
text += page.extract_text()
|
63 |
+
return text
|
64 |
+
|
65 |
+
# Function to extract text from DOCX files
|
66 |
+
def extract_text_from_docx(file):
|
67 |
+
doc = Document(file)
|
68 |
+
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
69 |
+
return text
|
70 |
+
|
71 |
+
# Function to preprocess text
|
72 |
+
def preprocess_text(text):
|
73 |
+
return " ".join(text.replace("\n", " ").replace("\r", " ").split())
|
74 |
+
|
75 |
+
# Function to chunk large text into smaller parts
|
76 |
+
def chunk_text(text, max_tokens=2000):
|
77 |
+
chunks = []
|
78 |
+
current_chunk = []
|
79 |
+
current_length = 0
|
80 |
+
|
81 |
+
for sentence in text.split(". "):
|
82 |
+
sentence_length = len(sentence.split())
|
83 |
+
if current_length + sentence_length <= max_tokens:
|
84 |
+
current_chunk.append(sentence)
|
85 |
+
current_length += sentence_length
|
86 |
+
else:
|
87 |
+
chunks.append(". ".join(current_chunk))
|
88 |
+
current_chunk = [sentence]
|
89 |
+
current_length = sentence_length
|
90 |
+
|
91 |
+
if current_chunk:
|
92 |
+
chunks.append(". ".join(current_chunk))
|
93 |
+
|
94 |
+
return chunks
|
95 |
+
|
96 |
+
# Function to generate summary for each chunk
|
97 |
+
def generate_summary(text):
|
98 |
+
prompt = f"Please summarize the following content:\n\n{text}"
|
99 |
+
try:
|
100 |
+
response = model.invoke(prompt)
|
101 |
+
if hasattr(response, 'content'):
|
102 |
+
summary = response.content
|
103 |
+
else:
|
104 |
+
summary = str(response)
|
105 |
+
return summary.strip() if summary else "No summary available."
|
106 |
+
except Exception as e:
|
107 |
+
st.error(f"Error generating summary: {str(e)}")
|
108 |
+
return None
|
109 |
+
|
110 |
+
# Function to summarize large texts
|
111 |
+
def summarize_large_text(text, chunk_limit=5000):
|
112 |
+
chunks = chunk_text(text, max_tokens=chunk_limit)
|
113 |
+
summaries = []
|
114 |
+
for chunk in chunks:
|
115 |
+
summary = generate_summary(chunk)
|
116 |
+
if summary:
|
117 |
+
summaries.append(summary)
|
118 |
+
return " ".join(summaries)
|
119 |
+
|
120 |
+
# Function to detect key clauses
|
121 |
+
def detect_key_clauses(text):
|
122 |
+
key_clauses = [
|
123 |
+
{"clause": "confidentiality", "summary": "Confidentiality clauses ensure that sensitive information remains protected."},
|
124 |
+
{"clause": "liability", "summary": "Liability clauses outline the responsibility for damages or losses incurred."},
|
125 |
+
{"clause": "termination", "summary": "Termination clauses specify the conditions under which a contract may be ended."},
|
126 |
+
{"clause": "force majeure", "summary": "Force majeure clauses excuse parties from performance obligations due to unforeseen events."},
|
127 |
+
{"clause": "governing law", "summary": "Governing law clauses specify which jurisdiction's laws will govern the contract."},
|
128 |
+
{"clause": "dispute resolution", "summary": "Dispute resolution clauses specify how conflicts between parties will be resolved."},
|
129 |
+
{"clause": "amendment", "summary": "Amendment clauses outline the process for changing the terms of the contract."},
|
130 |
+
{"clause": "warranty", "summary": "Warranty clauses provide assurances regarding the quality or condition of goods or services."},
|
131 |
+
]
|
132 |
+
|
133 |
+
detected_clauses = []
|
134 |
+
for clause in key_clauses:
|
135 |
+
if clause["clause"].lower() in text.lower():
|
136 |
+
clause_start = text.lower().find(clause["clause"].lower())
|
137 |
+
context = text[clause_start - 50: clause_start + 200]
|
138 |
+
explanation = f"The document mentions '{clause['clause']}' clause. Context: {context.strip()}..."
|
139 |
+
detected_clauses.append({
|
140 |
+
"clause": clause["clause"].capitalize(),
|
141 |
+
"summary": clause["summary"],
|
142 |
+
"explanation": explanation
|
143 |
+
})
|
144 |
+
|
145 |
+
return detected_clauses
|
146 |
+
|
147 |
+
# Function to detect hidden obligations or dependencies
|
148 |
+
def detect_hidden_obligations_or_dependencies(text, summary):
|
149 |
+
hidden_obligations = [
|
150 |
+
{"phrase": "dependent upon", "summary": "This suggests that some action is conditional upon another."},
|
151 |
+
{"phrase": "if", "summary": "This indicates that certain conditions must be met to fulfill the obligation."},
|
152 |
+
{"phrase": "may be required", "summary": "Implies that the party could be obligated to perform an action under specific conditions."},
|
153 |
+
{"phrase": "should", "summary": "Implies a recommendation or requirement, though not explicitly mandatory."},
|
154 |
+
{"phrase": "obligated to", "summary": "Indicates a clear, binding duty to perform an action."},
|
155 |
+
]
|
156 |
+
|
157 |
+
hidden_dependencies = []
|
158 |
+
|
159 |
+
for item in hidden_obligations:
|
160 |
+
if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
|
161 |
+
phrase_start = text.lower().find(item["phrase"].lower())
|
162 |
+
context = text[phrase_start - 50: phrase_start + 200]
|
163 |
+
hidden_dependencies.append({
|
164 |
+
"phrase": item["phrase"],
|
165 |
+
"summary": item["summary"],
|
166 |
+
"context": context.strip()
|
167 |
+
})
|
168 |
+
|
169 |
+
return hidden_dependencies
|
170 |
+
|
171 |
+
# Function to detect risks in the text
|
172 |
+
def detect_risks(text, summary):
|
173 |
+
risk_phrases = [
|
174 |
+
{"phrase": "penalty", "summary": "This indicates financial or legal consequences.", "risk_level": "High"},
|
175 |
+
{"phrase": "liability", "summary": "This suggests potential financial responsibility.", "risk_level": "Medium"},
|
176 |
+
{"phrase": "default", "summary": "This can lead to serious legal consequences.", "risk_level": "High"},
|
177 |
+
{"phrase": "breach", "summary": "This may expose the party to significant penalties.", "risk_level": "High"},
|
178 |
+
{"phrase": "suspension", "summary": "This indicates risks of halting services.", "risk_level": "Medium"},
|
179 |
+
{"phrase": "should", "summary": "This implies a recommendation, which may not be mandatory.", "risk_level": "Low"},
|
180 |
+
{"phrase": "may be required", "summary": "This suggests that obligations could exist under certain conditions.", "risk_level": "Low"},
|
181 |
+
{"phrase": "indemnify", "summary": "This entails a duty to compensate for harm or loss, indicating potential financial risk.", "risk_level": "High"},
|
182 |
+
{"phrase": "termination for cause", "summary": "This indicates a risk of ending the contract due to specific failures.", "risk_level": "High"},
|
183 |
+
{"phrase": "compliance", "summary": "Non-compliance with regulations can lead to legal penalties.", "risk_level": "High"},
|
184 |
+
]
|
185 |
+
|
186 |
+
detected_risks = []
|
187 |
+
|
188 |
+
for item in risk_phrases:
|
189 |
+
if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
|
190 |
+
phrase_start = text.lower().find(item["phrase"].lower())
|
191 |
+
context = text[phrase_start - 50: phrase_start + 200]
|
192 |
+
detected_risks.append({
|
193 |
+
"phrase": item["phrase"],
|
194 |
+
"summary": item["summary"],
|
195 |
+
"context": context.strip(),
|
196 |
+
"risk_level": item["risk_level"]
|
197 |
+
})
|
198 |
+
|
199 |
+
return detected_risks
|
200 |
+
|
201 |
+
# Function to calculate overall risk score
|
202 |
+
def calculate_overall_risk_score(detected_risks):
|
203 |
+
risk_scores = {
|
204 |
+
"High": 3,
|
205 |
+
"Medium": 2,
|
206 |
+
"Low": 1
|
207 |
+
}
|
208 |
+
total_score = sum(risk_scores.get(risk['risk_level'], 0) for risk in detected_risks)
|
209 |
+
return total_score
|
210 |
+
|
211 |
+
# Function to plot risk assessment matrix
|
212 |
+
def plot_risk_assessment_matrix(detected_risks):
|
213 |
+
likelihood = []
|
214 |
+
impact = []
|
215 |
+
|
216 |
+
for risk in detected_risks:
|
217 |
+
if risk['risk_level'] == 'High':
|
218 |
+
likelihood.append(3)
|
219 |
+
impact.append(3)
|
220 |
+
elif risk['risk_level'] == 'Medium':
|
221 |
+
likelihood.append(2)
|
222 |
+
impact.append(2)
|
223 |
+
elif risk['risk_level'] == 'Low':
|
224 |
+
likelihood.append(1)
|
225 |
+
impact.append(1)
|
226 |
+
|
227 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
228 |
+
scatter = ax.scatter(likelihood, impact, alpha=0.6)
|
229 |
+
|
230 |
+
ax.set_xticks([1, 2, 3])
|
231 |
+
ax.set_yticks([1, 2, 3])
|
232 |
+
ax.set_xticklabels(['Low', 'Medium', 'High'])
|
233 |
+
ax.set_yticklabels(['Low', 'Medium', 'High'])
|
234 |
+
ax.set_xlabel('Likelihood')
|
235 |
+
ax.set_ylabel('Impact')
|
236 |
+
ax.set_title('Risk Assessment Matrix')
|
237 |
+
|
238 |
+
for i in range(len(detected_risks)):
|
239 |
+
ax.annotate(detected_risks[i]['phrase'], (likelihood[i], impact[i]))
|
240 |
+
|
241 |
+
buf = io.BytesIO()
|
242 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
243 |
+
buf.seek(0)
|
244 |
+
|
245 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
246 |
+
buf.close()
|
247 |
+
|
248 |
+
return img_str
|
249 |
+
|
250 |
+
# Function to plot risk level distribution pie chart
|
251 |
+
def plot_risk_level_distribution(detected_risks):
|
252 |
+
risk_levels = [risk['risk_level'] for risk in detected_risks]
|
253 |
+
level_counts = {level: risk_levels.count(level) for level in set(risk_levels)}
|
254 |
+
|
255 |
+
fig, ax = plt.subplots(figsize=(4, 3))
|
256 |
+
ax.pie(level_counts.values(), labels=level_counts.keys(), autopct='%1.1f%%', startangle=90)
|
257 |
+
ax.axis('equal')
|
258 |
+
|
259 |
+
plt.title("Risk Level Distribution", fontsize=10)
|
260 |
+
|
261 |
+
buf = io.BytesIO()
|
262 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
263 |
+
buf.seek(0)
|
264 |
+
|
265 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
266 |
+
buf.close()
|
267 |
+
|
268 |
+
return img_str
|
269 |
+
|
270 |
+
# Function to plot risks by type bar chart
|
271 |
+
def plot_risks_by_type(detected_risks):
|
272 |
+
risk_phrases = [risk['phrase'] for risk in detected_risks]
|
273 |
+
phrase_counts = {phrase: risk_phrases.count(phrase) for phrase in set(risk_phrases)}
|
274 |
+
|
275 |
+
fig, ax = plt.subplots(figsize=(4, 3))
|
276 |
+
ax.bar(phrase_counts.keys(), phrase_counts.values(), color='lightcoral')
|
277 |
+
plt.xticks(rotation=45, ha='right')
|
278 |
+
ax.set_title("Risks by Type", fontsize=10)
|
279 |
+
ax.set_ylabel("Count")
|
280 |
+
|
281 |
+
buf = io.BytesIO()
|
282 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
283 |
+
buf.seek(0)
|
284 |
+
|
285 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
286 |
+
buf.close()
|
287 |
+
|
288 |
+
return img_str
|
289 |
+
|
290 |
+
# Function to plot stacked bar chart of risks by level
|
291 |
+
def plot_stacked_bar_chart(detected_risks):
|
292 |
+
risk_levels = ['High', 'Medium', 'Low']
|
293 |
+
level_counts = {level: 0 for level in risk_levels}
|
294 |
+
|
295 |
+
for risk in detected_risks:
|
296 |
+
level_counts[risk['risk_level']] += 1
|
297 |
+
|
298 |
+
fig, ax = plt.subplots(figsize=(4, 3))
|
299 |
+
ax.bar(level_counts.keys(), level_counts.values(), color=['#ff9999', '#66b3ff', '#99ff99'])
|
300 |
+
ax.set_title("Stacked Bar Chart of Risks by Level", fontsize=10)
|
301 |
+
ax.set_ylabel("Count")
|
302 |
+
|
303 |
+
buf = io.BytesIO()
|
304 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
305 |
+
buf.seek(0)
|
306 |
+
|
307 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
308 |
+
buf.close()
|
309 |
+
|
310 |
+
return img_str
|
311 |
+
|
312 |
+
# Function to plot risk heatmap
|
313 |
+
def plot_risk_heatmap(detected_risks):
|
314 |
+
risk_data = {'Risk Level': [], 'Count': []}
|
315 |
+
|
316 |
+
for risk in detected_risks:
|
317 |
+
risk_data['Risk Level'].append(risk['risk_level'])
|
318 |
+
risk_data['Count'].append(1)
|
319 |
+
|
320 |
+
df = pd.DataFrame(risk_data)
|
321 |
+
heatmap_data = df.groupby('Risk Level').count().reset_index()
|
322 |
+
|
323 |
+
fig, ax = plt.subplots(figsize=(4, 3))
|
324 |
+
sns.heatmap(heatmap_data.pivot_table(index='Risk Level', values='Count'), annot=True, cmap='YlGnBu', ax=ax)
|
325 |
+
ax.set_title("Risk Heatmap")
|
326 |
+
|
327 |
+
buf = io.BytesIO()
|
328 |
+
plt.savefig(buf, format="png", bbox_inches='tight')
|
329 |
+
buf.seek(0)
|
330 |
+
|
331 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
332 |
+
buf.close()
|
333 |
+
|
334 |
+
return img_str
|
335 |
+
|
336 |
+
# Function to convert base64 to image
|
337 |
+
def base64_to_image(data):
|
338 |
+
return io.BytesIO(base64.b64decode(data))
|
339 |
+
|
340 |
+
# Function to generate PDF document with improved aesthetics
|
341 |
+
def generate_pdf_analysis(document_text, summary, detected_clauses, hidden_obligations, detected_risks, risk_assessment_matrix, risk_level_distribution, risks_by_type, stacked_bar_chart, risk_heatmap):
|
342 |
+
pdf = FPDF()
|
343 |
+
pdf.add_page()
|
344 |
+
|
345 |
+
# Set page borders
|
346 |
+
pdf.set_draw_color(0, 0, 0)
|
347 |
+
pdf.rect(5, 5, 200, 287)
|
348 |
+
|
349 |
+
# Add Arial font
|
350 |
+
pdf.add_font("Arial", "", "arial.ttf", uni=True)
|
351 |
+
pdf.set_font("Arial", size=12)
|
352 |
+
|
353 |
+
# Title
|
354 |
+
pdf.set_font("Arial", 'B', 16)
|
355 |
+
pdf.cell(0, 10, 'Legal Document Analysis Report', ln=True, align='C')
|
356 |
+
pdf.ln(10)
|
357 |
+
|
358 |
+
# Executive Summary
|
359 |
+
pdf.set_font("Arial", 'B', 14)
|
360 |
+
pdf.cell(0, 10, 'Executive Summary', ln=True)
|
361 |
+
pdf.set_font("Arial", '', 12)
|
362 |
+
pdf.multi_cell(0, 10, summary)
|
363 |
+
pdf.ln(10)
|
364 |
+
|
365 |
+
# Risks Section
|
366 |
+
pdf.set_font("Arial", 'B', 14)
|
367 |
+
pdf.cell(0, 10, 'Risk Analysis', ln=True)
|
368 |
+
pdf.set_font("Arial", '', 12)
|
369 |
+
for risk in detected_risks:
|
370 |
+
pdf.cell(0, 10, f"{risk['phrase']}: {risk['summary']} (Risk Level: {risk['risk_level']})", ln=True)
|
371 |
+
pdf.ln(10)
|
372 |
+
|
373 |
+
# Add visualizations for risks
|
374 |
+
pdf.image(base64_to_image(risk_assessment_matrix), x=10, y=pdf.get_y(), w=90)
|
375 |
+
pdf.image(base64_to_image(risk_level_distribution), x=110, y=pdf.get_y()-50, w=90) # Position next to the first image
|
376 |
+
pdf.ln(60)
|
377 |
+
|
378 |
+
pdf.image(base64_to_image(risks_by_type), x=10, y=pdf.get_y(), w=90)
|
379 |
+
pdf.image(base64_to_image(stacked_bar_chart), x=110, y=pdf.get_y()-50, w=90) # Position next to the previous image
|
380 |
+
pdf.ln(60)
|
381 |
+
|
382 |
+
pdf.image(base64_to_image(risk_heatmap), x=10, y=pdf.get_y(), w=190) # Fit image to width
|
383 |
+
pdf.ln(10)
|
384 |
+
|
385 |
+
# Footer
|
386 |
+
pdf.set_y(-15)
|
387 |
+
pdf.set_font("Arial", 'I', 8)
|
388 |
+
pdf.cell(0, 10, f'Page {pdf.page_no()}', 0, 0, 'C')
|
389 |
+
|
390 |
+
return pdf
|
391 |
+
|
392 |
+
# Function to handle chatbot interaction
|
393 |
+
def chatbot_query(user_input):
|
394 |
+
try:
|
395 |
+
response = model({"text": user_input})
|
396 |
+
if isinstance(response, dict) and 'text' in response:
|
397 |
+
return response['text']
|
398 |
+
else:
|
399 |
+
return "Error: Unexpected response format."
|
400 |
+
except Exception as e:
|
401 |
+
return f"Error: {str(e)}"
|
402 |
+
|
403 |
+
# Function to generate suggestions for improvement
|
404 |
+
def generate_suggestions(text):
|
405 |
+
suggestions = []
|
406 |
+
|
407 |
+
if "shall" in text.lower():
|
408 |
+
suggestions.append("Consider replacing 'shall' with 'must' for clarity.")
|
409 |
+
if "may" in text.lower():
|
410 |
+
suggestions.append("Clarify the conditions under which actions 'may' be taken.")
|
411 |
+
if "if" in text.lower() and "then" not in text.lower():
|
412 |
+
suggestions.append("Ensure conditional statements are clear and complete.")
|
413 |
+
if "not" in text.lower():
|
414 |
+
suggestions.append("Review negative clauses to ensure they are not overly restrictive.")
|
415 |
+
|
416 |
+
return suggestions
|
417 |
+
|
418 |
+
# Function to send feedback via email
|
419 |
+
def send_feedback(feedback_content):
|
420 |
+
sender_email = os.getenv("SENDER_EMAIL")
|
421 |
+
receiver_email = os.getenv("FEEDBACK_EMAIL")
|
422 |
+
password = os.getenv("EMAIL_PASS")
|
423 |
+
|
424 |
+
msg = MIMEMultipart()
|
425 |
+
msg['From'] = sender_email
|
426 |
+
msg['To'] = receiver_email
|
427 |
+
msg['Subject'] = "User Feedback on Legal Document Analysis"
|
428 |
+
|
429 |
+
msg.attach(MIMEText(feedback_content, 'plain'))
|
430 |
+
|
431 |
+
try:
|
432 |
+
with smtplib.SMTP('smtp.gmail.com', 587) as server:
|
433 |
+
server.starttls()
|
434 |
+
server.login(sender_email, password)
|
435 |
+
server.send_message(msg)
|
436 |
+
return True
|
437 |
+
except Exception as e:
|
438 |
+
return False
|
439 |
+
|
440 |
+
# Function to send PDF via email
|
441 |
+
def send_pdf_via_email(pdf_buffer, recipient_email):
|
442 |
+
sender_email = os.getenv("SENDER_EMAIL")
|
443 |
+
password = os.getenv("EMAIL_PASS")
|
444 |
+
|
445 |
+
msg = MIMEMultipart()
|
446 |
+
msg['From'] = sender_email
|
447 |
+
msg['To'] = recipient_email
|
448 |
+
msg['Subject'] = "Legal Document Analysis PDF"
|
449 |
+
|
450 |
+
msg.attach(MIMEText("Please find the attached analysis of your legal document.", 'plain'))
|
451 |
+
|
452 |
+
# Attach the PDF
|
453 |
+
pdf_attachment = io.BytesIO(pdf_buffer.getvalue())
|
454 |
+
pdf_attachment.seek(0)
|
455 |
+
part = MIMEApplication(pdf_attachment.read(), Name='legal_document_analysis.pdf')
|
456 |
+
part['Content-Disposition'] = 'attachment; filename="legal_document_analysis.pdf"'
|
457 |
+
msg.attach(part)
|
458 |
+
|
459 |
+
try:
|
460 |
+
with smtplib.SMTP('smtp.gmail.com', 587) as server:
|
461 |
+
server.starttls()
|
462 |
+
server.login(sender_email, password)
|
463 |
+
server.send_message(msg)
|
464 |
+
return True
|
465 |
+
except Exception as e:
|
466 |
+
return False
|
467 |
+
|
468 |
+
# Function to simulate tracking updates in the document
|
469 |
+
def track_updates(document_text):
|
470 |
+
updates = [
|
471 |
+
{"update": "Updated confidentiality clause.", "suggestion": "Consider specifying the duration of confidentiality."},
|
472 |
+
{"update": "Revised liability limits.", "suggestion": "Ensure the limits are realistic and compliant with regulations."},
|
473 |
+
{"update": "Clarified termination conditions.", "suggestion": "Check if all potential termination scenarios are covered."},
|
474 |
+
]
|
475 |
+
return updates
|
476 |
+
|
477 |
+
# Function to get suggestion from Groq API based on the update
|
478 |
+
def get_update_suggestion(update):
|
479 |
+
prompt = f"Suggest improvements or updates for this legal clause: {update}"
|
480 |
+
suggestion = generate_summary(prompt)
|
481 |
+
return suggestion if suggestion else "No suggestion available."
|
482 |
+
|
483 |
+
# Function to display feedback form
|
484 |
+
def display_feedback_form():
|
485 |
+
st.subheader("Feedback Form")
|
486 |
+
feedback = st.text_area("Please provide your feedback or suggestions:")
|
487 |
+
|
488 |
+
question1 = st.radio("How would you rate the analysis?", ("Excellent", "Good", "Fair", "Poor"))
|
489 |
+
question2 = st.radio("Would you recommend this tool to others?", ("Yes", "No"))
|
490 |
+
|
491 |
+
if st.button("Submit Feedback"):
|
492 |
+
feedback_content = f"Feedback: {feedback}\nRating: {question1}\nRecommendation: {question2}"
|
493 |
+
if send_feedback(feedback_content):
|
494 |
+
st.success("Thank you for your feedback! It has been sent.")
|
495 |
+
else:
|
496 |
+
st.error("Failed to send feedback. Please try again later.")
|
497 |
+
|
498 |
+
# Main function to display the legal analysis page
|
499 |
+
def display_legal_analysis_page():
|
500 |
+
st.title("📜 Legal Document Analysis with Groq API")
|
501 |
+
|
502 |
+
uploaded_file = st.file_uploader("Upload your legal document (PDF or DOCX)", type=["pdf", "docx"])
|
503 |
+
if uploaded_file:
|
504 |
+
if uploaded_file.name.endswith(".pdf"):
|
505 |
+
document_text = preprocess_text(read_pdf(uploaded_file))
|
506 |
+
elif uploaded_file.name.endswith(".docx"):
|
507 |
+
document_text = preprocess_text(extract_text_from_docx(uploaded_file))
|
508 |
+
else:
|
509 |
+
st.error("Unsupported file type!")
|
510 |
+
return
|
511 |
+
|
512 |
+
tabs = st.tabs(["📄 Document Text", "🔍 Summary", "🔑 Key Clauses", "🔒 Hidden Obligations", "⚠ Risk Analysis", "💡 Suggestions & Chatbot", "🔄 Update Tracker"])
|
513 |
+
|
514 |
+
with tabs[0]:
|
515 |
+
st.subheader("Document Text")
|
516 |
+
st.write(document_text)
|
517 |
+
|
518 |
+
with tabs[1]:
|
519 |
+
st.subheader("Summary")
|
520 |
+
summary = summarize_large_text(document_text)
|
521 |
+
st.write(summary)
|
522 |
+
|
523 |
+
with tabs[2]:
|
524 |
+
st.subheader("Key Clauses Identified")
|
525 |
+
detected_clauses = detect_key_clauses(document_text)
|
526 |
+
if detected_clauses:
|
527 |
+
for clause in detected_clauses:
|
528 |
+
with st.expander(clause['clause'], expanded=False):
|
529 |
+
st.write(f"*Summary:* {clause['summary']}")
|
530 |
+
st.write(f"*Context:* {clause['explanation']}")
|
531 |
+
|
532 |
+
else:
|
533 |
+
st.write("No key clauses detected.")
|
534 |
+
|
535 |
+
with tabs[3]:
|
536 |
+
st.subheader("Hidden Obligations and Dependencies")
|
537 |
+
hidden_obligations = detect_hidden_obligations_or_dependencies(document_text, summary)
|
538 |
+
if hidden_obligations:
|
539 |
+
for obligation in hidden_obligations:
|
540 |
+
st.write(f"{obligation['phrase']}: {obligation['summary']}")
|
541 |
+
st.write(obligation['context'])
|
542 |
+
else:
|
543 |
+
st.write("No hidden obligations detected.")
|
544 |
+
|
545 |
+
with tabs[4]:
|
546 |
+
st.subheader("Risk Analysis")
|
547 |
+
detected_risks = detect_risks(document_text, summary)
|
548 |
+
overall_risk_score = calculate_overall_risk_score(detected_risks)
|
549 |
+
|
550 |
+
st.write(f"*Overall Risk Score:* {overall_risk_score}")
|
551 |
+
|
552 |
+
if detected_risks:
|
553 |
+
for risk in detected_risks:
|
554 |
+
with st.expander(risk['phrase'], expanded=False):
|
555 |
+
st.write(f"*Summary:* {risk['summary']} (Risk Level: {risk['risk_level']})")
|
556 |
+
short_context = risk['context'].strip().split('. ')[0] + '.'
|
557 |
+
st.write(f"*Context:* {short_context}")
|
558 |
+
else:
|
559 |
+
st.write("No risks detected.")
|
560 |
+
|
561 |
+
# Generate all visualizations
|
562 |
+
risk_assessment_matrix = plot_risk_assessment_matrix(detected_risks)
|
563 |
+
risk_level_distribution = plot_risk_level_distribution(detected_risks)
|
564 |
+
risks_by_type = plot_risks_by_type(detected_risks)
|
565 |
+
stacked_bar_chart = plot_stacked_bar_chart(detected_risks)
|
566 |
+
risk_heatmap = plot_risk_heatmap(detected_risks)
|
567 |
+
|
568 |
+
# Display the charts
|
569 |
+
st.image(f"data:image/png;base64,{risk_assessment_matrix}", caption="Risk Assessment Matrix")
|
570 |
+
st.image(f"data:image/png;base64,{risk_level_distribution}", caption="Risk Level Distribution")
|
571 |
+
st.image(f"data:image/png;base64,{risks_by_type}", caption="Risks by Type")
|
572 |
+
st.image(f"data:image/png;base64,{stacked_bar_chart}", caption="Stacked Bar Chart of Risks by Level")
|
573 |
+
st.image(f"data:image/png;base64,{risk_heatmap}", caption="Risk Heatmap")
|
574 |
+
|
575 |
+
with tabs[5]:
|
576 |
+
st.subheader("Suggestions for Improvement")
|
577 |
+
suggestions = generate_suggestions(document_text)
|
578 |
+
for suggestion in suggestions:
|
579 |
+
st.write(f"- {suggestion}")
|
580 |
+
|
581 |
+
st.subheader("Chatbot for Analysis")
|
582 |
+
user_input = st.text_input("Ask the chatbot about your document:")
|
583 |
+
if st.button("Send"):
|
584 |
+
if user_input:
|
585 |
+
chatbot_response = chatbot_query(user_input)
|
586 |
+
st.write("*Chatbot Response:*")
|
587 |
+
st.write(chatbot_response)
|
588 |
+
else:
|
589 |
+
st.warning("Please enter a question.")
|
590 |
+
|
591 |
+
# Download PDF Analysis Button
|
592 |
+
st.subheader("Download Analysis as PDF")
|
593 |
+
pdf_buffer = io.BytesIO()
|
594 |
+
pdf = generate_pdf_analysis(document_text, summary, detected_clauses, hidden_obligations, detected_risks, risk_assessment_matrix, risk_level_distribution, risks_by_type, stacked_bar_chart, risk_heatmap)
|
595 |
+
pdf.output(pdf_buffer, 'F')
|
596 |
+
pdf_buffer.seek(0)
|
597 |
+
|
598 |
+
# Add download button for PDF
|
599 |
+
st.download_button(
|
600 |
+
label="Download PDF Analysis",
|
601 |
+
data=pdf_buffer,
|
602 |
+
file_name="legal_document_analysis.pdf",
|
603 |
+
mime="application/pdf"
|
604 |
+
)
|
605 |
+
|
606 |
+
# Input for recipient email
|
607 |
+
recipient_email = st.text_input("Enter your email address to receive the PDF:")
|
608 |
+
|
609 |
+
# Button to send PDF via email
|
610 |
+
if st.button("Send PDF Analysis"):
|
611 |
+
if recipient_email:
|
612 |
+
if send_pdf_via_email(pdf_buffer, recipient_email):
|
613 |
+
st.success("PDF has been sent successfully!")
|
614 |
+
else:
|
615 |
+
st.error("Failed to send PDF. Please try again.")
|
616 |
+
else:
|
617 |
+
st.warning("Please enter a valid email address.")
|
618 |
+
|
619 |
+
# Feedback Form Section
|
620 |
+
display_feedback_form()
|
621 |
+
|
622 |
+
with tabs[6]: # Update Tracker Tab
|
623 |
+
st.subheader("Document Updates")
|
624 |
+
updates = track_updates(document_text)
|
625 |
+
if st.button("Show Updates"):
|
626 |
+
if updates:
|
627 |
+
for update in updates:
|
628 |
+
with st.expander(update['update'], expanded=False):
|
629 |
+
suggestion = get_update_suggestion(update['update'])
|
630 |
+
st.write(f"*Suggestion:* {suggestion}")
|
631 |
+
else:
|
632 |
+
st.write("No updates detected.")
|
633 |
+
|
634 |
+
# Run the application
|
635 |
+
if __name__ == "__main__":
|
636 |
+
display_legal_analysis_page()
|
rag_pipeline.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from transformers import pipeline
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.llms import HuggingFaceHub
|
10 |
+
|
11 |
+
# Load environment variables from .env file
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
def extract_text_from_pdf(pdf_file):
|
15 |
+
"""Extracts text from a PDF file."""
|
16 |
+
reader = PdfReader(pdf_file)
|
17 |
+
text = ""
|
18 |
+
for page in reader.pages:
|
19 |
+
text += page.extract_text() or ""
|
20 |
+
return text
|
21 |
+
|
22 |
+
def create_vector_store(text, embeddings_model="sentence-transformers/all-MiniLM-L6-v2"):
|
23 |
+
"""Creates a FAISS vector store from the input text."""
|
24 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
25 |
+
texts = text_splitter.split_text(text)
|
26 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model)
|
27 |
+
return FAISS.from_texts(texts, embeddings)
|
28 |
+
|
29 |
+
def create_qa_pipeline(vector_store, llm_model="EleutherAI/gpt-neo-2.7B"):
|
30 |
+
"""Creates a Retrieval-based Question-Answering pipeline."""
|
31 |
+
|
32 |
+
# Get the Hugging Face API token from the environment variable
|
33 |
+
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
34 |
+
|
35 |
+
if huggingfacehub_api_token is None:
|
36 |
+
raise ValueError("HuggingFace Hub API token is missing! Please set the 'HUGGINGFACEHUB_API_TOKEN' in your .env file.")
|
37 |
+
|
38 |
+
retriever = vector_store.as_retriever()
|
39 |
+
|
40 |
+
# Initialize Hugging Face LLM with the API token
|
41 |
+
llm = HuggingFaceHub(
|
42 |
+
repo_id=llm_model, # specify the repo_id (e.g., gpt-neo-2.7B)
|
43 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
44 |
+
task="text-generation" # specify the task (e.g., text-generation for language models)
|
45 |
+
)
|
46 |
+
|
47 |
+
return RetrievalQA.from_chain_type(llm, retriever=retriever)
|
48 |
+
|
49 |
+
def process_pdf_and_answer(pdf_path):
|
50 |
+
"""Processes the PDF and returns answers to the text inside."""
|
51 |
+
|
52 |
+
# Extract text from the PDF
|
53 |
+
text = extract_text_from_pdf(pdf_path)
|
54 |
+
|
55 |
+
# Create a FAISS vector store
|
56 |
+
vector_store = create_vector_store(text)
|
57 |
+
|
58 |
+
# Create a QA pipeline
|
59 |
+
qa_pipeline = create_qa_pipeline(vector_store)
|
60 |
+
|
61 |
+
# Answer the question
|
62 |
+
# Since you no longer need to ask a question manually, just extract some context
|
63 |
+
answer = qa_pipeline.run("Extract key information from the PDF.") # Modify to get a summary or key data
|
64 |
+
return answer
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
import argparse
|
68 |
+
parser = argparse.ArgumentParser(description="RAG Pipeline for PDF analysis")
|
69 |
+
parser.add_argument("--pdf", type=str, required=True, help="Path to the PDF file")
|
70 |
+
args = parser.parse_args()
|
71 |
+
|
72 |
+
pdf_path = args.pdf
|
73 |
+
|
74 |
+
# Process the PDF and get results
|
75 |
+
answer = process_pdf_and_answer(pdf_path)
|
76 |
+
print(f"Answer: {answer}")
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.20.0
|
2 |
+
PyPDF2==1.26.0
|
3 |
+
python-dotenv==0.20.0
|
4 |
+
langchain-groq==0.1.0
|
5 |
+
python-docx==0.8.11
|
6 |
+
matplotlib==3.5.1
|
7 |
+
pandas==1.4.1
|
8 |
+
seaborn==0.11.2
|
9 |
+
fpdf==1.7.2
|
10 |
+
smtplib==0.0.1
|
11 |
+
getpass==0.0.1
|
12 |
+
streamlit==1.20.0
|
13 |
+
requests==2.28.1
|
14 |
+
beautifulsoup4==4.11.1
|
15 |
+
python-dotenv==0.20.0
|
16 |
+
google-auth==2.15.0
|
17 |
+
google-auth-oauthlib==0.5.3
|
18 |
+
google-api-python-client==2.52.0
|
19 |
+
smtplib==0.0.1
|
20 |
+
python-dotenv==0.20.0
|
21 |
+
transformers==4.26.0
|
22 |
+
PyPDF2==1.26.0
|
23 |
+
langchain==0.0.200
|
24 |
+
faiss-cpu==1.7.2
|