|
import sys |
|
sys.stdout.reconfigure(line_buffering=True) |
|
|
|
import os |
|
import numpy as np |
|
import requests |
|
import cv2 |
|
from skimage import feature |
|
from io import BytesIO |
|
import traceback |
|
|
|
from flask import Flask, request, jsonify |
|
from PIL import Image |
|
|
|
|
|
import torch |
|
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection, AutoTokenizer, AutoModel |
|
from segment_anything import SamPredictor, sam_model_registry |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
FEATURE_WEIGHTS = { |
|
"shape": 0.4, |
|
"color": 0.5, |
|
"texture": 0.1 |
|
} |
|
|
|
|
|
FINAL_SCORE_THRESHOLD = 0.5 |
|
|
|
|
|
|
|
print("="*50) |
|
print("π Initializing application and loading models...") |
|
device_name = os.environ.get("device", "cpu") |
|
device = torch.device('cuda' if 'cuda' in device_name and torch.cuda.is_available() else 'cpu') |
|
print(f"π§ Using device: {device}") |
|
|
|
print("...Loading Grounding DINO model...") |
|
|
|
gnd_model_id = "IDEA-Research/grounding-dino-base" |
|
processor_gnd = AutoProcessor.from_pretrained(gnd_model_id) |
|
model_gnd = AutoModelForZeroShotObjectDetection.from_pretrained(gnd_model_id).to(device) |
|
|
|
print("...Loading Segment Anything (SAM) model...") |
|
sam_checkpoint = "sam_vit_b_01ec64.pth" |
|
sam_model = sam_model_registry["vit_b"](checkpoint=sam_checkpoint).to(device) |
|
predictor = SamPredictor(sam_model) |
|
|
|
print("...Loading BGE model for text embeddings...") |
|
|
|
bge_model_id = "BAAI/bge-large-en-v1.5" |
|
tokenizer_text = AutoTokenizer.from_pretrained(bge_model_id) |
|
model_text = AutoModel.from_pretrained(bge_model_id).to(device) |
|
print("β
All models loaded successfully.") |
|
print("="*50) |
|
|
|
|
|
|
|
|
|
def get_canonical_label(object_name_phrase: str) -> str: |
|
print(f"\n [Label] Extracting label for: '{object_name_phrase}'") |
|
label = object_name_phrase.strip().lower().split()[-1] |
|
label = ''.join(filter(str.isalpha, label)) |
|
print(f" [Label] β
Extracted label: '{label}'") |
|
return label if label else "unknown" |
|
|
|
def download_image_from_url(image_url: str) -> Image.Image: |
|
print(f" [Download] Downloading image from: {image_url[:80]}...") |
|
response = requests.get(image_url) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)) |
|
image_rgb = image.convert("RGB") |
|
print(" [Download] β
Image downloaded and standardized to RGB.") |
|
return image_rgb |
|
|
|
def detect_and_crop(image: Image.Image, object_name: str) -> Image.Image: |
|
print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'") |
|
image_np = np.array(image.convert("RGB")) |
|
height, width = image_np.shape[:2] |
|
prompt = [[f"a {object_name}"]] |
|
inputs = processor_gnd(images=image, text=prompt, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_gnd(**inputs) |
|
results = processor_gnd.post_process_grounded_object_detection( |
|
outputs, inputs.input_ids, threshold=0.4, text_threshold=0.3, target_sizes=[(height, width)] |
|
) |
|
if not results or len(results[0]['boxes']) == 0: |
|
print(" [Detect & Crop] β Warning: Grounding DINO did not detect the object. Using full image.") |
|
return image |
|
result = results[0] |
|
scores = result['scores'] |
|
max_idx = int(torch.argmax(scores)) |
|
box = result['boxes'][max_idx].cpu().numpy().astype(int) |
|
print(f" [Detect & Crop] β
Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}") |
|
x1, y1, x2, y2 = box |
|
|
|
predictor.set_image(image_np) |
|
box_prompt = np.array([[x1, y1, x2, y2]]) |
|
masks, _, _ = predictor.predict(box=box_prompt, multimask_output=False) |
|
mask = masks[0] |
|
|
|
mask_bool = mask > 0 |
|
cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8) |
|
cropped_img_rgba[:, :, :3] = image_np |
|
cropped_img_rgba[:, :, 3] = mask_bool * 255 |
|
|
|
cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2] |
|
|
|
object_image = Image.fromarray(cropped_img_rgba, 'RGBA') |
|
return object_image |
|
|
|
def extract_features(segmented_image: Image.Image) -> dict: |
|
image_rgba = np.array(segmented_image) |
|
if image_rgba.shape[2] != 4: |
|
raise ValueError("Segmented image must be RGBA") |
|
|
|
b, g, r, a = cv2.split(image_rgba) |
|
image_rgb = cv2.merge((b, g, r)) |
|
mask = a |
|
|
|
gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY) |
|
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten() if contours else np.zeros(7) |
|
|
|
color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256]) |
|
cv2.normalize(color_hist, color_hist) |
|
color_hist = color_hist.flatten() |
|
|
|
gray_masked = cv2.bitwise_and(gray, gray, mask=mask) |
|
lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform") |
|
(texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26)) |
|
texture_hist = texture_hist.astype("float32") |
|
texture_hist /= (texture_hist.sum() + 1e-6) |
|
|
|
return { |
|
"shape_features": hu_moments.tolist(), |
|
"color_features": color_hist.tolist(), |
|
"texture_features": texture_hist.tolist() |
|
} |
|
|
|
def get_text_embedding(text: str) -> list: |
|
print(f" [Embedding] Generating text embedding for: '{text[:50]}...'") |
|
text_with_instruction = f"Represent this sentence for searching relevant passages: {text}" |
|
inputs = tokenizer_text(text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device) |
|
with torch.no_grad(): |
|
outputs = model_text(**inputs) |
|
embedding = outputs.last_hidden_state[:, 0, :] |
|
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1) |
|
print(" [Embedding] β
Text embedding generated.") |
|
return embedding.cpu().numpy()[0].tolist() |
|
|
|
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float: |
|
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))) |
|
|
|
|
|
|
|
@app.route('/process', methods=['POST']) |
|
def process_item(): |
|
""" |
|
Receives item details, processes them, and returns all computed features. |
|
This is called when a new item is created in the Node.js backend. |
|
""" |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /process") |
|
try: |
|
data = request.get_json() |
|
if not data: |
|
return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
object_name = data.get('objectName') |
|
description = data.get('objectDescription') |
|
image_url = data.get('objectImage') |
|
|
|
if not all([object_name, description]): |
|
return jsonify({"error": "objectName and objectDescription are required."}), 400 |
|
|
|
|
|
canonical_label = get_canonical_label(object_name) |
|
text_embedding = get_text_embedding(description) |
|
|
|
response_data = { |
|
"canonicalLabel": canonical_label, |
|
"text_embedding": text_embedding, |
|
} |
|
|
|
|
|
if image_url: |
|
print("--- Image URL provided, processing visual features... ---") |
|
image = download_image_from_url(image_url) |
|
object_crop = detect_and_crop(image, canonical_label) |
|
visual_features = extract_features(object_crop) |
|
|
|
response_data.update(visual_features) |
|
else: |
|
print("--- No image URL provided, skipping visual feature extraction. ---") |
|
|
|
print("β
Successfully processed item.") |
|
print("="*50) |
|
return jsonify(response_data), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /process: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
def stretch_image_score(score): |
|
if score < 0.4 or score == 1.0: |
|
return score |
|
|
|
return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4) |
|
|
|
@app.route('/compare', methods=['POST']) |
|
def compare_items(): |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /compare") |
|
try: |
|
data = request.get_json() |
|
if not data: |
|
return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
query_item = data.get('queryItem') |
|
search_list = data.get('searchList') |
|
|
|
if not all([query_item, search_list]): |
|
return jsonify({"error": "queryItem and searchList are required."}), 400 |
|
|
|
query_text_emb = np.array(query_item['text_embedding']) |
|
results = [] |
|
print(f"--- Comparing 1 query item against {len(search_list)} items ---") |
|
|
|
for item in search_list: |
|
item_id = item.get('_id') |
|
print(f"\n [Checking] Item ID: {item_id}") |
|
try: |
|
|
|
text_emb_found = np.array(item['text_embedding']) |
|
text_score = cosine_similarity(query_text_emb, text_emb_found) |
|
print(f" - Text Score: {text_score:.4f}") |
|
|
|
|
|
has_query_image = 'shape_features' in query_item and query_item['shape_features'] |
|
has_item_image = 'shape_features' in item and item['shape_features'] |
|
|
|
if has_query_image and has_item_image: |
|
print(" - Both items have images. Performing visual comparison.") |
|
|
|
query_shape_feat = np.array(query_item['shape_features']) |
|
query_color_feat = np.array(query_item['color_features']).astype("float32") |
|
query_texture_feat = np.array(query_item['texture_features']).astype("float32") |
|
|
|
found_shape = np.array(item['shape_features']) |
|
found_color = np.array(item['color_features']).astype("float32") |
|
found_texture = np.array(item['texture_features']).astype("float32") |
|
|
|
shape_dist = cv2.matchShapes(query_shape_feat, found_shape, cv2.CONTOURS_MATCH_I1, 0.0) |
|
shape_score = 1.0 / (1.0 + shape_dist) |
|
color_score = cv2.compareHist(query_color_feat, found_color, cv2.HISTCMP_CORREL) |
|
texture_score = cv2.compareHist(query_texture_feat, found_texture, cv2.HISTCMP_CORREL) |
|
|
|
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score + |
|
FEATURE_WEIGHTS["color"] * color_score + |
|
FEATURE_WEIGHTS["texture"] * texture_score) |
|
|
|
print(f" - Raw Image Score: {raw_image_score:.4f}") |
|
|
|
image_score = stretch_image_score(raw_image_score) |
|
|
|
|
|
final_score = 0.4 * image_score + 0.6 * text_score |
|
print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}") |
|
|
|
else: |
|
|
|
print(" - One or both items missing image. Using text score only.") |
|
final_score = text_score |
|
|
|
|
|
if final_score >= FINAL_SCORE_THRESHOLD: |
|
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})") |
|
results.append({ |
|
"_id": item_id, |
|
"score": round(final_score, 4), |
|
"objectName": item.get("objectName"), |
|
"objectDescription": item.get("objectDescription"), |
|
"objectImage": item.get("objectImage"), |
|
}) |
|
else: |
|
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})") |
|
|
|
except Exception as e: |
|
print(f" [Skipping] Item {item_id} due to processing error: {e}") |
|
continue |
|
|
|
results.sort(key=lambda x: x["score"], reverse=True) |
|
print(f"\nβ
Search complete. Found {len(results)} potential matches.") |
|
print("="*50) |
|
return jsonify({"matches": results}), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /compare: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=7860) |