File size: 12,758 Bytes
bd5010f 3b235ec fbfffae 88b35be fbfffae 74eecc2 fbfffae b5d66be fbfffae c694458 fbfffae b5d66be fbfffae b5d66be fbfffae b5d66be fbfffae b5d66be ccbacb7 fbfffae b5d66be fbfffae b5d66be fbfffae b5d66be fbfffae b5d66be fbfffae 74eecc2 a9999ab 3b235ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import sys
sys.stdout.reconfigure(line_buffering=True)
import os
import numpy as np
import requests
import cv2
from skimage import feature
from io import BytesIO
import traceback
from flask import Flask, request, jsonify
from PIL import Image
# import deep learning libraries
import torch
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection, AutoTokenizer, AutoModel
from segment_anything import SamPredictor, sam_model_registry
app = Flask(__name__)
# sum = 1
FEATURE_WEIGHTS = {
"shape": 0.4,
"color": 0.5,
"texture": 0.1
}
# threshold
FINAL_SCORE_THRESHOLD = 0.5
# load all models
print("="*50)
print("π Initializing application and loading models...")
device_name = os.environ.get("device", "cpu")
device = torch.device('cuda' if 'cuda' in device_name and torch.cuda.is_available() else 'cpu')
print(f"π§ Using device: {device}")
print("...Loading Grounding DINO model...")
# --- β¬οΈ CORRECTED MODEL ID β¬οΈ ---
gnd_model_id = "IDEA-Research/grounding-dino-base"
processor_gnd = AutoProcessor.from_pretrained(gnd_model_id)
model_gnd = AutoModelForZeroShotObjectDetection.from_pretrained(gnd_model_id).to(device)
print("...Loading Segment Anything (SAM) model...")
sam_checkpoint = "sam_vit_b_01ec64.pth"
sam_model = sam_model_registry["vit_b"](checkpoint=sam_checkpoint).to(device)
predictor = SamPredictor(sam_model)
print("...Loading BGE model for text embeddings...")
# --- β¬οΈ UPGRADED MODEL β¬οΈ ---
bge_model_id = "BAAI/bge-large-en-v1.5"
tokenizer_text = AutoTokenizer.from_pretrained(bge_model_id)
model_text = AutoModel.from_pretrained(bge_model_id).to(device)
print("β
All models loaded successfully.")
print("="*50)
# helper functions
def get_canonical_label(object_name_phrase: str) -> str:
print(f"\n [Label] Extracting label for: '{object_name_phrase}'")
label = object_name_phrase.strip().lower().split()[-1]
label = ''.join(filter(str.isalpha, label))
print(f" [Label] β
Extracted label: '{label}'")
return label if label else "unknown"
def download_image_from_url(image_url: str) -> Image.Image:
print(f" [Download] Downloading image from: {image_url[:80]}...")
response = requests.get(image_url)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
image_rgb = image.convert("RGB")
print(" [Download] β
Image downloaded and standardized to RGB.")
return image_rgb
def detect_and_crop(image: Image.Image, object_name: str) -> Image.Image:
print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'")
image_np = np.array(image.convert("RGB"))
height, width = image_np.shape[:2]
prompt = [[f"a {object_name}"]]
inputs = processor_gnd(images=image, text=prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_gnd(**inputs)
results = processor_gnd.post_process_grounded_object_detection(
outputs, inputs.input_ids, threshold=0.4, text_threshold=0.3, target_sizes=[(height, width)]
)
if not results or len(results[0]['boxes']) == 0:
print(" [Detect & Crop] β Warning: Grounding DINO did not detect the object. Using full image.")
return image
result = results[0]
scores = result['scores']
max_idx = int(torch.argmax(scores))
box = result['boxes'][max_idx].cpu().numpy().astype(int)
print(f" [Detect & Crop] β
Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}")
x1, y1, x2, y2 = box
predictor.set_image(image_np)
box_prompt = np.array([[x1, y1, x2, y2]])
masks, _, _ = predictor.predict(box=box_prompt, multimask_output=False)
mask = masks[0]
mask_bool = mask > 0
cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8)
cropped_img_rgba[:, :, :3] = image_np
cropped_img_rgba[:, :, 3] = mask_bool * 255
cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2]
object_image = Image.fromarray(cropped_img_rgba, 'RGBA')
return object_image
def extract_features(segmented_image: Image.Image) -> dict:
image_rgba = np.array(segmented_image)
if image_rgba.shape[2] != 4:
raise ValueError("Segmented image must be RGBA")
b, g, r, a = cv2.split(image_rgba)
image_rgb = cv2.merge((b, g, r))
mask = a
gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten() if contours else np.zeros(7)
color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
cv2.normalize(color_hist, color_hist)
color_hist = color_hist.flatten()
gray_masked = cv2.bitwise_and(gray, gray, mask=mask)
lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform")
(texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26))
texture_hist = texture_hist.astype("float32")
texture_hist /= (texture_hist.sum() + 1e-6)
return {
"shape_features": hu_moments.tolist(),
"color_features": color_hist.tolist(),
"texture_features": texture_hist.tolist()
}
def get_text_embedding(text: str) -> list:
print(f" [Embedding] Generating text embedding for: '{text[:50]}...'")
text_with_instruction = f"Represent this sentence for searching relevant passages: {text}"
inputs = tokenizer_text(text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model_text(**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
print(" [Embedding] β
Text embedding generated.")
return embedding.cpu().numpy()[0].tolist()
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
# API endpoints
@app.route('/process', methods=['POST'])
def process_item():
"""
Receives item details, processes them, and returns all computed features.
This is called when a new item is created in the Node.js backend.
"""
print("\n" + "="*50)
print("β‘ [Request] Received new request to /process")
try:
data = request.get_json()
if not data:
return jsonify({"error": "Invalid JSON payload"}), 400
object_name = data.get('objectName')
description = data.get('objectDescription')
image_url = data.get('objectImage') # This can now be null
if not all([object_name, description]):
return jsonify({"error": "objectName and objectDescription are required."}), 400
# process text based features
canonical_label = get_canonical_label(object_name)
text_embedding = get_text_embedding(description)
response_data = {
"canonicalLabel": canonical_label,
"text_embedding": text_embedding,
}
# process visual features ONLY if an image_url is provided
if image_url:
print("--- Image URL provided, processing visual features... ---")
image = download_image_from_url(image_url)
object_crop = detect_and_crop(image, canonical_label)
visual_features = extract_features(object_crop)
# Add visual features to the response
response_data.update(visual_features)
else:
print("--- No image URL provided, skipping visual feature extraction. ---")
print("β
Successfully processed item.")
print("="*50)
return jsonify(response_data), 200
except Exception as e:
print(f"β Error in /process: {e}")
traceback.print_exc()
return jsonify({"error": str(e)}), 500
def stretch_image_score(score):
if score < 0.4 or score == 1.0:
return score
# increase confidence
return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4)
@app.route('/compare', methods=['POST'])
def compare_items():
print("\n" + "="*50)
print("β‘ [Request] Received new request to /compare")
try:
data = request.get_json()
if not data:
return jsonify({"error": "Invalid JSON payload"}), 400
query_item = data.get('queryItem')
search_list = data.get('searchList')
if not all([query_item, search_list]):
return jsonify({"error": "queryItem and searchList are required."}), 400
query_text_emb = np.array(query_item['text_embedding'])
results = []
print(f"--- Comparing 1 query item against {len(search_list)} items ---")
for item in search_list:
item_id = item.get('_id')
print(f"\n [Checking] Item ID: {item_id}")
try:
# Text comparison is always done
text_emb_found = np.array(item['text_embedding'])
text_score = cosine_similarity(query_text_emb, text_emb_found)
print(f" - Text Score: {text_score:.4f}")
# --- NEW: Check if BOTH items have visual features ---
has_query_image = 'shape_features' in query_item and query_item['shape_features']
has_item_image = 'shape_features' in item and item['shape_features']
if has_query_image and has_item_image:
print(" - Both items have images. Performing visual comparison.")
# If both have images, proceed with full comparison
query_shape_feat = np.array(query_item['shape_features'])
query_color_feat = np.array(query_item['color_features']).astype("float32")
query_texture_feat = np.array(query_item['texture_features']).astype("float32")
found_shape = np.array(item['shape_features'])
found_color = np.array(item['color_features']).astype("float32")
found_texture = np.array(item['texture_features']).astype("float32")
shape_dist = cv2.matchShapes(query_shape_feat, found_shape, cv2.CONTOURS_MATCH_I1, 0.0)
shape_score = 1.0 / (1.0 + shape_dist)
color_score = cv2.compareHist(query_color_feat, found_color, cv2.HISTCMP_CORREL)
texture_score = cv2.compareHist(query_texture_feat, found_texture, cv2.HISTCMP_CORREL)
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score +
FEATURE_WEIGHTS["color"] * color_score +
FEATURE_WEIGHTS["texture"] * texture_score)
print(f" - Raw Image Score: {raw_image_score:.4f}")
image_score = stretch_image_score(raw_image_score)
# Weighted average of image and text scores
final_score = 0.4 * image_score + 0.6 * text_score
print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}")
else:
# If one or both items lack an image, the final score is JUST the text score
print(" - One or both items missing image. Using text score only.")
final_score = text_score
# Check if the final score meets the threshold
if final_score >= FINAL_SCORE_THRESHOLD:
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
results.append({
"_id": item_id,
"score": round(final_score, 4),
"objectName": item.get("objectName"),
"objectDescription": item.get("objectDescription"),
"objectImage": item.get("objectImage"),
})
else:
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
except Exception as e:
print(f" [Skipping] Item {item_id} due to processing error: {e}")
continue
results.sort(key=lambda x: x["score"], reverse=True)
print(f"\nβ
Search complete. Found {len(results)} potential matches.")
print("="*50)
return jsonify({"matches": results}), 200
except Exception as e:
print(f"β Error in /compare: {e}")
traceback.print_exc()
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |