sohamnk commited on
Commit
fbfffae
Β·
verified Β·
1 Parent(s): fa5fb60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +296 -1
app.py CHANGED
@@ -2,7 +2,302 @@ import sys
2
  sys.stdout.reconfigure(line_buffering=True)
3
 
4
 
5
- from pipeline import app
 
 
 
 
 
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  if __name__ == '__main__':
8
  app.run(host='0.0.0.0', port=7860)
 
2
  sys.stdout.reconfigure(line_buffering=True)
3
 
4
 
5
+ import os
6
+ import numpy as np
7
+ import requests
8
+ import cv2
9
+ from skimage import feature
10
+ from io import BytesIO
11
+ import traceback
12
 
13
+ from flask import Flask, request, jsonify
14
+ from PIL import Image
15
+
16
+ # import deep learning libraries
17
+ import torch
18
+ from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection, AutoTokenizer, AutoModel
19
+ from segment_anything import SamPredictor, sam_model_registry
20
+
21
+ app = Flask(__name__)
22
+
23
+ # sum = 1
24
+ FEATURE_WEIGHTS = {
25
+ "shape": 0.4,
26
+ "color": 0.5,
27
+ "texture": 0.1
28
+ }
29
+
30
+ # threshold
31
+ FINAL_SCORE_THRESHOLD = 0.5
32
+
33
+
34
+ # load all models
35
+ print("="*50)
36
+ print("πŸš€ Initializing application and loading models...")
37
+ device_name = os.environ.get("device", "cpu")
38
+ device = torch.device('cuda' if 'cuda' in device_name and torch.cuda.is_available() else 'cpu')
39
+ print(f"🧠 Using device: {device}")
40
+
41
+ print("...Loading Grounding DINO model...")
42
+ gnd_model_id = "IDEA-Research/grounding-dino-tiny"
43
+ processor_gnd = AutoProcessor.from_pretrained(gnd_model_id)
44
+ model_gnd = AutoModelForZeroShotObjectDetection.from_pretrained(gnd_model_id).to(device)
45
+
46
+ print("...Loading Segment Anything (SAM) model...")
47
+ sam_checkpoint = "sam_vit_b_01ec64.pth"
48
+ sam_model = sam_model_registry["vit_b"](checkpoint=sam_checkpoint).to(device)
49
+ predictor = SamPredictor(sam_model)
50
+
51
+ print("...Loading BGE model for text embeddings...")
52
+ bge_model_id = "BAAI/bge-small-en-v1.5"
53
+ tokenizer_text = AutoTokenizer.from_pretrained(bge_model_id)
54
+ model_text = AutoModel.from_pretrained(bge_model_id).to(device)
55
+ print("βœ… All models loaded successfully.")
56
+ print("="*50)
57
+
58
+
59
+ # helper functions
60
+
61
+ def get_canonical_label(object_name_phrase: str) -> str:
62
+ print(f"\n [Label] Extracting label for: '{object_name_phrase}'")
63
+ label = object_name_phrase.strip().lower().split()[-1]
64
+ label = ''.join(filter(str.isalpha, label))
65
+ print(f" [Label] βœ… Extracted label: '{label}'")
66
+ return label if label else "unknown"
67
+
68
+ def download_image_from_url(image_url: str) -> Image.Image:
69
+ print(f" [Download] Downloading image from: {image_url[:80]}...")
70
+ response = requests.get(image_url)
71
+ response.raise_for_status()
72
+ image = Image.open(BytesIO(response.content))
73
+ image_rgb = image.convert("RGB")
74
+ print(" [Download] βœ… Image downloaded and standardized to RGB.")
75
+ return image_rgb
76
+
77
+ def detect_and_crop(image: Image.Image, object_name: str) -> Image.Image:
78
+ print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'")
79
+ image_np = np.array(image.convert("RGB"))
80
+ height, width = image_np.shape[:2]
81
+ prompt = [[f"a {object_name}"]]
82
+ inputs = processor_gnd(images=image, text=prompt, return_tensors="pt").to(device)
83
+ with torch.no_grad():
84
+ outputs = model_gnd(**inputs)
85
+ results = processor_gnd.post_process_grounded_object_detection(
86
+ outputs, inputs.input_ids, box_threshold=0.4, text_threshold=0.3, target_sizes=[(height, width)]
87
+ )
88
+ if not results or len(results[0]['boxes']) == 0:
89
+ print(" [Detect & Crop] ⚠ Warning: Grounding DINO did not detect the object. Using full image.")
90
+ return image
91
+ result = results[0]
92
+ scores = result['scores']
93
+ max_idx = int(torch.argmax(scores))
94
+ box = result['boxes'][max_idx].cpu().numpy().astype(int)
95
+ print(f" [Detect & Crop] βœ… Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}")
96
+ x1, y1, x2, y2 = box
97
+
98
+ predictor.set_image(image_np)
99
+ box_prompt = np.array([[x1, y1, x2, y2]])
100
+ masks, _, _ = predictor.predict(box=box_prompt, multimask_output=False)
101
+ mask = masks[0]
102
+
103
+ mask_bool = mask > 0
104
+ cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8)
105
+ cropped_img_rgba[:, :, :3] = image_np
106
+ cropped_img_rgba[:, :, 3] = mask_bool * 255
107
+
108
+ cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2]
109
+
110
+ object_image = Image.fromarray(cropped_img_rgba, 'RGBA')
111
+ return object_image
112
+
113
+ def extract_features(segmented_image: Image.Image) -> dict:
114
+ image_rgba = np.array(segmented_image)
115
+ if image_rgba.shape[2] != 4:
116
+ raise ValueError("Segmented image must be RGBA")
117
+
118
+ b, g, r, a = cv2.split(image_rgba)
119
+ image_rgb = cv2.merge((b, g, r))
120
+ mask = a
121
+
122
+ gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
123
+ contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
124
+ hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten() if contours else np.zeros(7)
125
+
126
+ color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
127
+ cv2.normalize(color_hist, color_hist)
128
+ color_hist = color_hist.flatten()
129
+
130
+ gray_masked = cv2.bitwise_and(gray, gray, mask=mask)
131
+ lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform")
132
+ (texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26))
133
+ texture_hist = texture_hist.astype("float32")
134
+ texture_hist /= (texture_hist.sum() + 1e-6)
135
+
136
+ return {
137
+ "shape_features": hu_moments.tolist(),
138
+ "color_features": color_hist.tolist(),
139
+ "texture_features": texture_hist.tolist()
140
+ }
141
+
142
+ def get_text_embedding(text: str) -> list:
143
+ print(f" [Embedding] Generating text embedding for: '{text[:50]}...'")
144
+ text_with_instruction = f"Represent this sentence for searching relevant passages: {text}"
145
+ inputs = tokenizer_text(text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device)
146
+ with torch.no_grad():
147
+ outputs = model_text(**inputs)
148
+ embedding = outputs.last_hidden_state[:, 0, :]
149
+ embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
150
+ print(" [Embedding] βœ… Text embedding generated.")
151
+ return embedding.cpu().numpy()[0].tolist()
152
+
153
+ def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
154
+ return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
155
+
156
+ # API endpoints
157
+
158
+ @app.route('/process', methods=['POST'])
159
+ def process_item():
160
+ """
161
+ Receives item details, processes them, and returns all computed features.
162
+ This is called when a new item is created in the Node.js backend.
163
+ """
164
+ print("\n" + "="*50)
165
+ print("➑ [Request] Received new request to /process")
166
+ try:
167
+ data = request.get_json()
168
+ if not data:
169
+ return jsonify({"error": "Invalid JSON payload"}), 400
170
+
171
+ object_name = data.get('objectName')
172
+ description = data.get('objectDescription')
173
+ image_url = data.get('objectImage') # This can now be null
174
+
175
+ if not all([object_name, description]):
176
+ return jsonify({"error": "objectName and objectDescription are required."}), 400
177
+
178
+ # process text based features
179
+ canonical_label = get_canonical_label(object_name)
180
+ text_embedding = get_text_embedding(description)
181
+
182
+ response_data = {
183
+ "canonicalLabel": canonical_label,
184
+ "text_embedding": text_embedding,
185
+ }
186
+
187
+ # process visual features ONLY if an image_url is provided
188
+ if image_url:
189
+ print("--- Image URL provided, processing visual features... ---")
190
+ image = download_image_from_url(image_url)
191
+ object_crop = detect_and_crop(image, canonical_label)
192
+ visual_features = extract_features(object_crop)
193
+ # Add visual features to the response
194
+ response_data.update(visual_features)
195
+ else:
196
+ print("--- No image URL provided, skipping visual feature extraction. ---")
197
+
198
+ print("βœ… Successfully processed item.")
199
+ print("="*50)
200
+ return jsonify(response_data), 200
201
+
202
+ except Exception as e:
203
+ print(f"❌ Error in /process: {e}")
204
+ traceback.print_exc()
205
+ return jsonify({"error": str(e)}), 500
206
+
207
+ def stretch_image_score(score):
208
+ if score < 0.4 or score == 1.0:
209
+ return score
210
+ # increase confidence
211
+ return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4)
212
+
213
+ @app.route('/compare', methods=['POST'])
214
+ def compare_items():
215
+ print("\n" + "="*50)
216
+ print("➑ [Request] Received new request to /compare")
217
+ try:
218
+ data = request.get_json()
219
+ if not data:
220
+ return jsonify({"error": "Invalid JSON payload"}), 400
221
+
222
+ query_item = data.get('queryItem')
223
+ search_list = data.get('searchList')
224
+
225
+ if not all([query_item, search_list]):
226
+ return jsonify({"error": "queryItem and searchList are required."}), 400
227
+
228
+ query_text_emb = np.array(query_item['text_embedding'])
229
+ results = []
230
+ print(f"--- Comparing 1 query item against {len(search_list)} items ---")
231
+
232
+ for item in search_list:
233
+ item_id = item.get('_id')
234
+ print(f"\n [Checking] Item ID: {item_id}")
235
+ try:
236
+ # Text comparison is always done
237
+ text_emb_found = np.array(item['text_embedding'])
238
+ text_score = cosine_similarity(query_text_emb, text_emb_found)
239
+ print(f" - Text Score: {text_score:.4f}")
240
+
241
+ # --- NEW: Check if BOTH items have visual features ---
242
+ has_query_image = 'shape_features' in query_item and query_item['shape_features']
243
+ has_item_image = 'shape_features' in item and item['shape_features']
244
+
245
+ if has_query_image and has_item_image:
246
+ print(" - Both items have images. Performing visual comparison.")
247
+ # If both have images, proceed with full comparison
248
+ query_shape_feat = np.array(query_item['shape_features'])
249
+ query_color_feat = np.array(query_item['color_features']).astype("float32")
250
+ query_texture_feat = np.array(query_item['texture_features']).astype("float32")
251
+
252
+ found_shape = np.array(item['shape_features'])
253
+ found_color = np.array(item['color_features']).astype("float32")
254
+ found_texture = np.array(item['texture_features']).astype("float32")
255
+
256
+ shape_dist = cv2.matchShapes(query_shape_feat, found_shape, cv2.CONTOURS_MATCH_I1, 0.0)
257
+ shape_score = 1.0 / (1.0 + shape_dist)
258
+ color_score = cv2.compareHist(query_color_feat, found_color, cv2.HISTCMP_CORREL)
259
+ texture_score = cv2.compareHist(query_texture_feat, found_texture, cv2.HISTCMP_CORREL)
260
+
261
+ raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score +
262
+ FEATURE_WEIGHTS["color"] * color_score +
263
+ FEATURE_WEIGHTS["texture"] * texture_score)
264
+
265
+ image_score = stretch_image_score(raw_image_score)
266
+
267
+ # Weighted average of image and text scores
268
+ final_score = 0.4 * image_score + 0.6 * text_score
269
+ print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}")
270
+
271
+ else:
272
+ # If one or both items lack an image, the final score is JUST the text score
273
+ print(" - One or both items missing image. Using text score only.")
274
+ final_score = text_score
275
+
276
+ # Check if the final score meets the threshold
277
+ if final_score >= FINAL_SCORE_THRESHOLD:
278
+ print(f" - βœ… ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
279
+ results.append({
280
+ "_id": item_id,
281
+ "score": round(final_score, 4),
282
+ "objectName": item.get("objectName"),
283
+ "objectDescription": item.get("objectDescription"),
284
+ "objectImage": item.get("objectImage"),
285
+ })
286
+ else:
287
+ print(f" - ❌ REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
288
+
289
+ except Exception as e:
290
+ print(f" [Skipping] Item {item_id} due to processing error: {e}")
291
+ continue
292
+
293
+ results.sort(key=lambda x: x["score"], reverse=True)
294
+ print(f"\nβœ… Search complete. Found {len(results)} potential matches.")
295
+ print("="*50)
296
+ return jsonify({"matches": results}), 200
297
+
298
+ except Exception as e:
299
+ print(f"❌ Error in /compare: {e}")
300
+ traceback.print_exc()
301
+ return jsonify({"error": str(e)}), 500
302
  if __name__ == '__main__':
303
  app.run(host='0.0.0.0', port=7860)