|
import traceback |
|
import numpy as np |
|
import cv2 |
|
from flask import request, jsonify |
|
|
|
|
|
from pipeline import app, models, logic |
|
|
|
@app.route('/process', methods=['POST']) |
|
def process_item(): |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /process") |
|
try: |
|
data = request.get_json() |
|
if not data: return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
object_name = data.get('objectName') |
|
description = data.get('objectDescription') |
|
image_url = data.get('objectImage') |
|
|
|
if not all([object_name, description]): |
|
return jsonify({"error": "objectName and objectDescription are required."}), 400 |
|
|
|
canonical_label = logic.get_canonical_label(object_name) |
|
text_embedding = logic.get_text_embedding(description, models) |
|
|
|
response_data = { |
|
"canonicalLabel": canonical_label, |
|
"text_embedding": text_embedding, |
|
} |
|
|
|
if image_url: |
|
print("--- Image URL provided, processing visual features... ---") |
|
image = logic.download_image_from_url(image_url) |
|
object_crop = logic.detect_and_crop(image, canonical_label, models) |
|
visual_features = logic.extract_features(object_crop) |
|
response_data.update(visual_features) |
|
else: |
|
print("--- No image URL provided, skipping visual feature extraction. ---") |
|
|
|
print("β
Successfully processed item.") |
|
print("="*50) |
|
return jsonify(response_data), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /process: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/compare', methods=['POST']) |
|
def compare_items(): |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /compare") |
|
try: |
|
data = request.get_json() |
|
if not data: return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
query_item = data.get('queryItem') |
|
search_list = data.get('searchList') |
|
|
|
if not all([query_item, search_list]): |
|
return jsonify({"error": "queryItem and searchList are required."}), 400 |
|
|
|
query_text_emb = np.array(query_item['text_embedding']) |
|
results = [] |
|
print(f"--- Comparing 1 query item against {len(search_list)} items ---") |
|
|
|
for item in search_list: |
|
item_id = item.get('_id') |
|
print(f"\n [Checking] Item ID: {item_id}") |
|
try: |
|
text_emb_found = np.array(item['text_embedding']) |
|
text_score = logic.cosine_similarity(query_text_emb, text_emb_found) |
|
print(f" - Text Score: {text_score:.4f}") |
|
|
|
has_query_image = 'shape_features' in query_item and query_item['shape_features'] |
|
has_item_image = 'shape_features' in item and item['shape_features'] |
|
|
|
if has_query_image and has_item_image: |
|
print(" - Both items have images. Performing visual comparison.") |
|
from pipeline import FEATURE_WEIGHTS |
|
query_shape = np.array(query_item['shape_features']) |
|
query_color = np.array(query_item['color_features']).astype("float32") |
|
query_texture = np.array(query_item['texture_features']).astype("float32") |
|
found_shape = np.array(item['shape_features']) |
|
found_color = np.array(item['color_features']).astype("float32") |
|
found_texture = np.array(item['texture_features']).astype("float32") |
|
shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0) |
|
shape_score = 1.0 / (1.0 + shape_dist) |
|
color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL) |
|
texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL) |
|
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score + |
|
FEATURE_WEIGHTS["color"] * color_score + |
|
FEATURE_WEIGHTS["texture"] * texture_score) |
|
print(f"Raw Image Score: {raw_image_score:.4f}") |
|
image_score = logic.stretch_image_score(raw_image_score) |
|
final_score = 0.4 * image_score + 0.6 * text_score |
|
print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}") |
|
else: |
|
print(" - One or both items missing image. Using text score only.") |
|
final_score = text_score |
|
|
|
from pipeline import FINAL_SCORE_THRESHOLD |
|
if final_score >= FINAL_SCORE_THRESHOLD: |
|
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})") |
|
results.append({ |
|
"_id": item_id, |
|
"score": round(final_score, 4), |
|
"objectName": item.get("objectName"), |
|
"objectDescription": item.get("objectDescription"), |
|
"objectImage": item.get("objectImage"), |
|
}) |
|
else: |
|
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})") |
|
except Exception as e: |
|
print(f" [Skipping] Item {item_id} due to processing error: {e}") |
|
continue |
|
|
|
results.sort(key=lambda x: x["score"], reverse=True) |
|
print(f"\nβ
Search complete. Found {len(results)} potential matches.") |
|
print("="*50) |
|
return jsonify({"matches": results}), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /compare: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |