Update pipeline/routes.py
Browse files- pipeline/routes.py +14 -29
pipeline/routes.py
CHANGED
@@ -6,20 +6,17 @@ from flask import request, jsonify
|
|
6 |
# Import app, models, and logic functions
|
7 |
from pipeline import app, models, logic
|
8 |
|
9 |
-
|
10 |
@app.route('/process', methods=['POST'])
|
11 |
def process_item():
|
12 |
-
print("\n" + "="
|
13 |
print("β‘ [Request] Received new request to /process")
|
14 |
-
|
15 |
try:
|
16 |
data = request.get_json()
|
17 |
-
if not data:
|
18 |
-
return jsonify({"error": "Invalid JSON payload"}), 400
|
19 |
|
20 |
object_name = data.get('objectName')
|
21 |
description = data.get('objectDescription')
|
22 |
-
image_url = data.get('objectImage')
|
23 |
|
24 |
if not all([object_name, description]):
|
25 |
return jsonify({"error": "objectName and objectDescription are required."}), 400
|
@@ -42,7 +39,7 @@ def process_item():
|
|
42 |
print("--- No image URL provided, skipping visual feature extraction. ---")
|
43 |
|
44 |
print("β
Successfully processed item.")
|
45 |
-
print("="
|
46 |
return jsonify(response_data), 200
|
47 |
|
48 |
except Exception as e:
|
@@ -50,23 +47,20 @@ def process_item():
|
|
50 |
traceback.print_exc()
|
51 |
return jsonify({"error": str(e)}), 500
|
52 |
|
53 |
-
|
54 |
@app.route('/compare', methods=['POST'])
|
55 |
def compare_items():
|
56 |
-
print("\n" + "="
|
57 |
print("β‘ [Request] Received new request to /compare")
|
58 |
-
|
59 |
try:
|
60 |
data = request.get_json()
|
61 |
-
if not data:
|
62 |
-
return jsonify({"error": "Invalid JSON payload"}), 400
|
63 |
|
64 |
query_item = data.get('queryItem')
|
65 |
search_list = data.get('searchList')
|
66 |
|
67 |
if not all([query_item, search_list]):
|
68 |
return jsonify({"error": "queryItem and searchList are required."}), 400
|
69 |
-
|
70 |
query_text_emb = np.array(query_item['text_embedding'])
|
71 |
results = []
|
72 |
print(f"--- Comparing 1 query item against {len(search_list)} items ---")
|
@@ -74,7 +68,6 @@ def compare_items():
|
|
74 |
for item in search_list:
|
75 |
item_id = item.get('_id')
|
76 |
print(f"\n [Checking] Item ID: {item_id}")
|
77 |
-
|
78 |
try:
|
79 |
text_emb_found = np.array(item['text_embedding'])
|
80 |
text_score = logic.cosine_similarity(query_text_emb, text_emb_found)
|
@@ -85,27 +78,20 @@ def compare_items():
|
|
85 |
|
86 |
if has_query_image and has_item_image:
|
87 |
print(" - Both items have images. Performing visual comparison.")
|
88 |
-
from pipeline import FEATURE_WEIGHTS
|
89 |
-
|
90 |
query_shape = np.array(query_item['shape_features'])
|
91 |
query_color = np.array(query_item['color_features']).astype("float32")
|
92 |
query_texture = np.array(query_item['texture_features']).astype("float32")
|
93 |
-
|
94 |
found_shape = np.array(item['shape_features'])
|
95 |
found_color = np.array(item['color_features']).astype("float32")
|
96 |
found_texture = np.array(item['texture_features']).astype("float32")
|
97 |
-
|
98 |
shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0)
|
99 |
shape_score = 1.0 / (1.0 + shape_dist)
|
100 |
color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL)
|
101 |
texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
FEATURE_WEIGHTS["color"] * color_score +
|
106 |
-
FEATURE_WEIGHTS["texture"] * texture_score
|
107 |
-
)
|
108 |
-
|
109 |
print(f"Raw Image Score: {raw_image_score:.4f}")
|
110 |
image_score = logic.stretch_image_score(raw_image_score)
|
111 |
final_score = 0.4 * image_score + 0.6 * text_score
|
@@ -114,7 +100,7 @@ def compare_items():
|
|
114 |
print(" - One or both items missing image. Using text score only.")
|
115 |
final_score = text_score
|
116 |
|
117 |
-
from pipeline import FINAL_SCORE_THRESHOLD
|
118 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
119 |
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
|
120 |
results.append({
|
@@ -126,17 +112,16 @@ def compare_items():
|
|
126 |
})
|
127 |
else:
|
128 |
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
|
129 |
-
|
130 |
except Exception as e:
|
131 |
print(f" [Skipping] Item {item_id} due to processing error: {e}")
|
132 |
continue
|
133 |
|
134 |
results.sort(key=lambda x: x["score"], reverse=True)
|
135 |
print(f"\nβ
Search complete. Found {len(results)} potential matches.")
|
136 |
-
print("="
|
137 |
return jsonify({"matches": results}), 200
|
138 |
|
139 |
except Exception as e:
|
140 |
print(f"β Error in /compare: {e}")
|
141 |
traceback.print_exc()
|
142 |
-
return jsonify({"error": str(e)}), 500
|
|
|
6 |
# Import app, models, and logic functions
|
7 |
from pipeline import app, models, logic
|
8 |
|
|
|
9 |
@app.route('/process', methods=['POST'])
|
10 |
def process_item():
|
11 |
+
print("\n" + "="*50)
|
12 |
print("β‘ [Request] Received new request to /process")
|
|
|
13 |
try:
|
14 |
data = request.get_json()
|
15 |
+
if not data: return jsonify({"error": "Invalid JSON payload"}), 400
|
|
|
16 |
|
17 |
object_name = data.get('objectName')
|
18 |
description = data.get('objectDescription')
|
19 |
+
image_url = data.get('objectImage')
|
20 |
|
21 |
if not all([object_name, description]):
|
22 |
return jsonify({"error": "objectName and objectDescription are required."}), 400
|
|
|
39 |
print("--- No image URL provided, skipping visual feature extraction. ---")
|
40 |
|
41 |
print("β
Successfully processed item.")
|
42 |
+
print("="*50)
|
43 |
return jsonify(response_data), 200
|
44 |
|
45 |
except Exception as e:
|
|
|
47 |
traceback.print_exc()
|
48 |
return jsonify({"error": str(e)}), 500
|
49 |
|
|
|
50 |
@app.route('/compare', methods=['POST'])
|
51 |
def compare_items():
|
52 |
+
print("\n" + "="*50)
|
53 |
print("β‘ [Request] Received new request to /compare")
|
|
|
54 |
try:
|
55 |
data = request.get_json()
|
56 |
+
if not data: return jsonify({"error": "Invalid JSON payload"}), 400
|
|
|
57 |
|
58 |
query_item = data.get('queryItem')
|
59 |
search_list = data.get('searchList')
|
60 |
|
61 |
if not all([query_item, search_list]):
|
62 |
return jsonify({"error": "queryItem and searchList are required."}), 400
|
63 |
+
|
64 |
query_text_emb = np.array(query_item['text_embedding'])
|
65 |
results = []
|
66 |
print(f"--- Comparing 1 query item against {len(search_list)} items ---")
|
|
|
68 |
for item in search_list:
|
69 |
item_id = item.get('_id')
|
70 |
print(f"\n [Checking] Item ID: {item_id}")
|
|
|
71 |
try:
|
72 |
text_emb_found = np.array(item['text_embedding'])
|
73 |
text_score = logic.cosine_similarity(query_text_emb, text_emb_found)
|
|
|
78 |
|
79 |
if has_query_image and has_item_image:
|
80 |
print(" - Both items have images. Performing visual comparison.")
|
81 |
+
from pipeline import FEATURE_WEIGHTS # Import constant
|
|
|
82 |
query_shape = np.array(query_item['shape_features'])
|
83 |
query_color = np.array(query_item['color_features']).astype("float32")
|
84 |
query_texture = np.array(query_item['texture_features']).astype("float32")
|
|
|
85 |
found_shape = np.array(item['shape_features'])
|
86 |
found_color = np.array(item['color_features']).astype("float32")
|
87 |
found_texture = np.array(item['texture_features']).astype("float32")
|
|
|
88 |
shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0)
|
89 |
shape_score = 1.0 / (1.0 + shape_dist)
|
90 |
color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL)
|
91 |
texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL)
|
92 |
+
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score +
|
93 |
+
FEATURE_WEIGHTS["color"] * color_score +
|
94 |
+
FEATURE_WEIGHTS["texture"] * texture_score)
|
|
|
|
|
|
|
|
|
95 |
print(f"Raw Image Score: {raw_image_score:.4f}")
|
96 |
image_score = logic.stretch_image_score(raw_image_score)
|
97 |
final_score = 0.4 * image_score + 0.6 * text_score
|
|
|
100 |
print(" - One or both items missing image. Using text score only.")
|
101 |
final_score = text_score
|
102 |
|
103 |
+
from pipeline import FINAL_SCORE_THRESHOLD # Import constant
|
104 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
105 |
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
|
106 |
results.append({
|
|
|
112 |
})
|
113 |
else:
|
114 |
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
|
|
|
115 |
except Exception as e:
|
116 |
print(f" [Skipping] Item {item_id} due to processing error: {e}")
|
117 |
continue
|
118 |
|
119 |
results.sort(key=lambda x: x["score"], reverse=True)
|
120 |
print(f"\nβ
Search complete. Found {len(results)} potential matches.")
|
121 |
+
print("="*50)
|
122 |
return jsonify({"matches": results}), 200
|
123 |
|
124 |
except Exception as e:
|
125 |
print(f"β Error in /compare: {e}")
|
126 |
traceback.print_exc()
|
127 |
+
return jsonify({"error": str(e)}), 500
|