|
import numpy as np |
|
import requests |
|
import cv2 |
|
from skimage import feature |
|
from io import BytesIO |
|
from PIL import Image |
|
import torch |
|
from PIL import ImageFile |
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
def get_canonical_label(object_name_phrase: str) -> str: |
|
print(f"\n [Label] Extracting label for: '{object_name_phrase}'") |
|
label = object_name_phrase.strip().lower().split()[-1] |
|
label = ''.join(filter(str.isalpha, label)) |
|
print(f" [Label] β
Extracted label: '{label}'") |
|
return label if label else "unknown" |
|
|
|
def download_image_from_url(image_url: str) -> Image.Image: |
|
print(f" [Download] Downloading image from: {image_url[:80]}...") |
|
response = requests.get(image_url) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)) |
|
image_rgb = image.convert("RGB") |
|
print(" [Download] β
Image downloaded and standardized to RGB.") |
|
return image_rgb |
|
|
|
def detect_and_crop(image: Image.Image, object_name: str, models: dict) -> Image.Image: |
|
print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'") |
|
image_np = np.array(image.convert("RGB")) |
|
height, width = image_np.shape[:2] |
|
prompt = [[f"a {object_name}"]] |
|
|
|
inputs = models['processor_gnd']( |
|
images=image, |
|
text=prompt, |
|
return_tensors="pt" |
|
).to(models['device']) |
|
|
|
with torch.no_grad(): |
|
outputs = models['model_gnd'](**inputs) |
|
|
|
|
|
results = models['processor_gnd'].post_process_grounded_object_detection( |
|
outputs=outputs, |
|
input_ids=inputs.input_ids, |
|
threshold=0.4, |
|
text_threshold=0.3, |
|
target_sizes=[(height, width)] |
|
) |
|
|
|
if not results or len(results[0]['boxes']) == 0: |
|
print(" [Detect & Crop] β Warning: Grounding DINO did not detect the object. Using full image.") |
|
return image |
|
|
|
result = results[0] |
|
scores = result['scores'] |
|
max_idx = int(torch.argmax(scores)) |
|
box = result['boxes'][max_idx].cpu().numpy().astype(int) |
|
print(f" [Detect & Crop] β
Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}") |
|
|
|
x1, y1, x2, y2 = box |
|
models['predictor'].set_image(image_np) |
|
box_prompt = np.array([[x1, y1, x2, y2]]) |
|
masks, _, _ = models['predictor'].predict(box=box_prompt, multimask_output=False) |
|
mask = masks[0] |
|
mask_bool = mask > 0 |
|
|
|
cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8) |
|
cropped_img_rgba[:, :, :3] = image_np |
|
cropped_img_rgba[:, :, 3] = mask_bool * 255 |
|
cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2] |
|
|
|
return Image.fromarray(cropped_img_rgba, 'RGBA') |
|
|
|
|
|
def extract_features(segmented_image: Image.Image) -> dict: |
|
image_rgba = np.array(segmented_image) |
|
if image_rgba.shape[2] != 4: raise ValueError("Segmented image must be RGBA") |
|
b, g, r, a = cv2.split(image_rgba) |
|
image_rgb = cv2.merge((b, g, r)) |
|
mask = a |
|
gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY) |
|
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten() if contours else np.zeros(7) |
|
color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256]) |
|
cv2.normalize(color_hist, color_hist) |
|
color_hist = color_hist.flatten() |
|
gray_masked = cv2.bitwise_and(gray, gray, mask=mask) |
|
lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform") |
|
(texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26)) |
|
texture_hist = texture_hist.astype("float32") |
|
texture_hist /= (texture_hist.sum() + 1e-6) |
|
return { |
|
"shape_features": hu_moments.tolist(), |
|
"color_features": color_hist.tolist(), |
|
"texture_features": texture_hist.tolist() |
|
} |
|
|
|
def get_text_embedding(text: str, models: dict) -> list: |
|
print(f" [Embedding] Generating text embedding for: '{text[:50]}...'") |
|
text_with_instruction = f"Represent this sentence for searching relevant passages: {text}" |
|
inputs = models['tokenizer_text'](text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(models['device']) |
|
with torch.no_grad(): |
|
outputs = models['model_text'](**inputs) |
|
embedding = outputs.last_hidden_state[:, 0, :] |
|
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1) |
|
print(" [Embedding] β
Text embedding generated.") |
|
return embedding.cpu().numpy()[0].tolist() |
|
|
|
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float: |
|
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))) |
|
|
|
def stretch_image_score(score): |
|
if score < 0.4 or score == 1.0: return score |
|
return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4) |