File size: 4,831 Bytes
cb8fd55 9ad8225 cb8fd55 9ad8225 5b786df cb8fd55 fa5fb60 cb8fd55 2aed1b0 fa5fb60 9ad8225 fa5fb60 9ad8225 fa5fb60 cb8fd55 fa5fb60 cb8fd55 fa5fb60 cb8fd55 fa5fb60 cb8fd55 fa5fb60 cb8fd55 fa5fb60 cb8fd55 9ad8225 cb8fd55 2aed1b0 9ad8225 cb8fd55 2aed1b0 9ad8225 cb8fd55 9ad8225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import numpy as np
import requests
import cv2
from skimage import feature
from io import BytesIO
from PIL import Image
import torch
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def get_canonical_label(object_name_phrase: str) -> str:
print(f"\n [Label] Extracting label for: '{object_name_phrase}'")
label = object_name_phrase.strip().lower().split()[-1]
label = ''.join(filter(str.isalpha, label))
print(f" [Label] β
Extracted label: '{label}'")
return label if label else "unknown"
def download_image_from_url(image_url: str) -> Image.Image:
print(f" [Download] Downloading image from: {image_url[:80]}...")
response = requests.get(image_url)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
image_rgb = image.convert("RGB")
print(" [Download] β
Image downloaded and standardized to RGB.")
return image_rgb
def detect_and_crop(image: Image.Image, object_name: str, models: dict) -> Image.Image:
print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'")
image_np = np.array(image.convert("RGB"))
height, width = image_np.shape[:2]
prompt = [[f"a {object_name}"]]
inputs = models['processor_gnd'](
images=image,
text=prompt,
return_tensors="pt"
).to(models['device'])
with torch.no_grad():
outputs = models['model_gnd'](**inputs)
# Updated signature: use threshold and text_threshold, no box_threshold
results = models['processor_gnd'].post_process_grounded_object_detection(
outputs=outputs,
input_ids=inputs.input_ids,
threshold=0.4,
text_threshold=0.3,
target_sizes=[(height, width)]
)
if not results or len(results[0]['boxes']) == 0:
print(" [Detect & Crop] β Warning: Grounding DINO did not detect the object. Using full image.")
return image
result = results[0]
scores = result['scores']
max_idx = int(torch.argmax(scores))
box = result['boxes'][max_idx].cpu().numpy().astype(int)
print(f" [Detect & Crop] β
Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}")
x1, y1, x2, y2 = box
models['predictor'].set_image(image_np)
box_prompt = np.array([[x1, y1, x2, y2]])
masks, _, _ = models['predictor'].predict(box=box_prompt, multimask_output=False)
mask = masks[0]
mask_bool = mask > 0
cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8)
cropped_img_rgba[:, :, :3] = image_np
cropped_img_rgba[:, :, 3] = mask_bool * 255
cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2]
return Image.fromarray(cropped_img_rgba, 'RGBA')
def extract_features(segmented_image: Image.Image) -> dict:
image_rgba = np.array(segmented_image)
if image_rgba.shape[2] != 4: raise ValueError("Segmented image must be RGBA")
b, g, r, a = cv2.split(image_rgba)
image_rgb = cv2.merge((b, g, r))
mask = a
gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten() if contours else np.zeros(7)
color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
cv2.normalize(color_hist, color_hist)
color_hist = color_hist.flatten()
gray_masked = cv2.bitwise_and(gray, gray, mask=mask)
lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform")
(texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26))
texture_hist = texture_hist.astype("float32")
texture_hist /= (texture_hist.sum() + 1e-6)
return {
"shape_features": hu_moments.tolist(),
"color_features": color_hist.tolist(),
"texture_features": texture_hist.tolist()
}
def get_text_embedding(text: str, models: dict) -> list:
print(f" [Embedding] Generating text embedding for: '{text[:50]}...'")
text_with_instruction = f"Represent this sentence for searching relevant passages: {text}"
inputs = models['tokenizer_text'](text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(models['device'])
with torch.no_grad():
outputs = models['model_text'](**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
print(" [Embedding] β
Text embedding generated.")
return embedding.cpu().numpy()[0].tolist()
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
def stretch_image_score(score):
if score < 0.4 or score == 1.0: return score
return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4) |