|
import traceback |
|
import numpy as np |
|
import cv2 |
|
from flask import request, jsonify |
|
|
|
|
|
from pipeline import app, models, logic |
|
|
|
|
|
TOP_N_CANDIDATES = 20 |
|
|
|
@app.route('/process', methods=['POST']) |
|
def process_item(): |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /process") |
|
try: |
|
data = request.get_json() |
|
if not data: return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
object_name = data.get('objectName') |
|
description = data.get('objectDescription') |
|
image_url = data.get('objectImage') |
|
|
|
if not all([object_name, description]): |
|
return jsonify({"error": "objectName and objectDescription are required."}), 400 |
|
|
|
canonical_label = logic.get_canonical_label(object_name) |
|
text_embedding = logic.get_text_embedding(description, models) |
|
|
|
response_data = { |
|
"canonicalLabel": canonical_label, |
|
"text_embedding": text_embedding, |
|
} |
|
|
|
if image_url: |
|
print("--- Image URL provided, processing visual features... ---") |
|
image = logic.download_image_from_url(image_url) |
|
object_crop = logic.detect_and_crop(image, canonical_label, models) |
|
visual_features = logic.extract_features(object_crop) |
|
response_data.update(visual_features) |
|
else: |
|
print("--- No image URL provided, skipping visual feature extraction. ---") |
|
|
|
print("β
Successfully processed item.") |
|
print("="*50) |
|
return jsonify(response_data), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /process: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/compare', methods=['POST']) |
|
def compare_items(): |
|
print("\n" + "="*50) |
|
print("β‘ [Request] Received new request to /compare") |
|
try: |
|
data = request.get_json() |
|
if not data: return jsonify({"error": "Invalid JSON payload"}), 400 |
|
|
|
query_item = data.get('queryItem') |
|
search_list = data.get('searchList') |
|
|
|
if not all([query_item, search_list]): |
|
return jsonify({"error": "queryItem and searchList are required."}), 400 |
|
|
|
|
|
print(f"--- Stage 1: Retrieving top candidates from {len(search_list)} items... ---") |
|
|
|
initial_candidates = [] |
|
query_text_emb = np.array(query_item['text_embedding']) |
|
|
|
for item in search_list: |
|
text_emb_found = np.array(item['text_embedding']) |
|
text_score = logic.cosine_similarity(query_text_emb, text_emb_found) |
|
initial_candidates.append({"item": item, "initial_score": text_score}) |
|
|
|
|
|
initial_candidates.sort(key=lambda x: x["initial_score"], reverse=True) |
|
top_candidates = initial_candidates[:TOP_N_CANDIDATES] |
|
print(f"--- Found {len(top_candidates)} candidates for re-ranking. ---") |
|
|
|
|
|
if not top_candidates: |
|
print("β
No potential matches found in Stage 1.") |
|
return jsonify({"matches": []}), 200 |
|
|
|
print(f"\n--- Stage 2: Re-ranking top {len(top_candidates)} candidates... ---") |
|
query_description = query_item['objectDescription'] |
|
|
|
|
|
rerank_pairs = [(query_description, cand['item']['objectDescription']) for cand in top_candidates] |
|
|
|
|
|
cross_encoder_scores = models['cross_encoder'].predict(rerank_pairs) |
|
|
|
|
|
final_results = [] |
|
for i, candidate_data in enumerate(top_candidates): |
|
item = candidate_data['item'] |
|
cross_score = cross_encoder_scores[i] |
|
print(f"\n [Re-Ranking] Item ID: {item.get('_id')}") |
|
print(f" - Cross-Encoder Score: {cross_score:.4f}") |
|
|
|
|
|
has_query_image = 'shape_features' in query_item and query_item['shape_features'] |
|
has_item_image = 'shape_features' in item and item['shape_features'] |
|
|
|
if has_query_image and has_item_image: |
|
from pipeline import FEATURE_WEIGHTS |
|
query_shape = np.array(query_item['shape_features']) |
|
query_color = np.array(query_item['color_features']).astype("float32") |
|
query_texture = np.array(query_item['texture_features']).astype("float32") |
|
found_shape = np.array(item['shape_features']) |
|
found_color = np.array(item['color_features']).astype("float32") |
|
found_texture = np.array(item['texture_features']).astype("float32") |
|
shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0) |
|
shape_score = 1.0 / (1.0 + shape_dist) |
|
color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL) |
|
texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL) |
|
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score + |
|
FEATURE_WEIGHTS["color"] * color_score + |
|
FEATURE_WEIGHTS["texture"] * texture_score) |
|
image_score = logic.stretch_image_score(raw_image_score) |
|
final_score = 0.4 * image_score + 0.6 * cross_score |
|
print(f" - Image Score: {image_score:.4f} | Final Re-ranked Score: {final_score:.4f}") |
|
else: |
|
final_score = cross_score |
|
|
|
from pipeline import FINAL_SCORE_THRESHOLD |
|
if final_score >= FINAL_SCORE_THRESHOLD: |
|
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})") |
|
final_results.append({ |
|
"_id": item.get('_id'), |
|
"score": round(final_score, 4), |
|
"objectName": item.get("objectName"), |
|
"objectDescription": item.get("objectDescription"), |
|
"objectImage": item.get("objectImage"), |
|
}) |
|
else: |
|
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})") |
|
|
|
final_results.sort(key=lambda x: x["score"], reverse=True) |
|
print(f"\nβ
Search complete. Found {len(final_results)} final matches after re-ranking.") |
|
print("="*50) |
|
return jsonify({"matches": final_results}), 200 |
|
|
|
except Exception as e: |
|
print(f"β Error in /compare: {e}") |
|
traceback.print_exc() |
|
return jsonify({"error": str(e)}), 500 |