Update pipeline/routes.py
Browse files- pipeline/routes.py +11 -22
pipeline/routes.py
CHANGED
@@ -6,6 +6,9 @@ from flask import request, jsonify
|
|
6 |
# Import app, models, and logic functions
|
7 |
from pipeline import app, models, logic
|
8 |
|
|
|
|
|
|
|
9 |
@app.route('/process', methods=['POST'])
|
10 |
def process_item():
|
11 |
print("\n" + "="*50)
|
@@ -16,7 +19,7 @@ def process_item():
|
|
16 |
|
17 |
object_name = data.get('objectName')
|
18 |
description = data.get('objectDescription')
|
19 |
-
image_url = data.get('objectImage')
|
20 |
|
21 |
if not all([object_name, description]):
|
22 |
return jsonify({"error": "objectName and objectDescription are required."}), 400
|
@@ -47,10 +50,6 @@ def process_item():
|
|
47 |
traceback.print_exc()
|
48 |
return jsonify({"error": str(e)}), 500
|
49 |
|
50 |
-
@app.route('/compare', methods=['POST'])
|
51 |
-
# Add a new constant at the top of the file
|
52 |
-
TOP_N_CANDIDATES = 20 # The number of items to re-rank
|
53 |
-
|
54 |
@app.route('/compare', methods=['POST'])
|
55 |
def compare_items():
|
56 |
print("\n" + "="*50)
|
@@ -64,19 +63,16 @@ def compare_items():
|
|
64 |
|
65 |
if not all([query_item, search_list]):
|
66 |
return jsonify({"error": "queryItem and searchList are required."}), 400
|
67 |
-
|
68 |
# === STAGE 1: FAST RETRIEVAL (using Bi-Encoder) ===
|
69 |
print(f"--- Stage 1: Retrieving top candidates from {len(search_list)} items... ---")
|
70 |
-
|
71 |
initial_candidates = []
|
72 |
query_text_emb = np.array(query_item['text_embedding'])
|
73 |
|
74 |
for item in search_list:
|
75 |
text_emb_found = np.array(item['text_embedding'])
|
76 |
text_score = logic.cosine_similarity(query_text_emb, text_emb_found)
|
77 |
-
|
78 |
-
# For now, just use the text_score as the initial score
|
79 |
-
# We will calculate the full score later for the top candidates
|
80 |
initial_candidates.append({"item": item, "initial_score": text_score})
|
81 |
|
82 |
# Sort by the initial score and keep the best ones
|
@@ -91,10 +87,10 @@ def compare_items():
|
|
91 |
|
92 |
print(f"\n--- Stage 2: Re-ranking top {len(top_candidates)} candidates... ---")
|
93 |
query_description = query_item['objectDescription']
|
94 |
-
|
95 |
# Create pairs of [query, candidate_description] for the cross-encoder
|
96 |
rerank_pairs = [(query_description, cand['item']['objectDescription']) for cand in top_candidates]
|
97 |
-
|
98 |
# Get new, highly accurate scores from the cross-encoder
|
99 |
cross_encoder_scores = models['cross_encoder'].predict(rerank_pairs)
|
100 |
|
@@ -109,9 +105,8 @@ def compare_items():
|
|
109 |
# Now we calculate the final image and combined score, just like before
|
110 |
has_query_image = 'shape_features' in query_item and query_item['shape_features']
|
111 |
has_item_image = 'shape_features' in item and item['shape_features']
|
112 |
-
|
113 |
if has_query_image and has_item_image:
|
114 |
-
# (This image scoring logic is the same as your old code)
|
115 |
from pipeline import FEATURE_WEIGHTS
|
116 |
query_shape = np.array(query_item['shape_features'])
|
117 |
query_color = np.array(query_item['color_features']).astype("float32")
|
@@ -127,11 +122,10 @@ def compare_items():
|
|
127 |
FEATURE_WEIGHTS["color"] * color_score +
|
128 |
FEATURE_WEIGHTS["texture"] * texture_score)
|
129 |
image_score = logic.stretch_image_score(raw_image_score)
|
130 |
-
|
131 |
-
final_score = 0.4 * image_score + 0.6 * cross_score
|
132 |
print(f" - Image Score: {image_score:.4f} | Final Re-ranked Score: {final_score:.4f}")
|
133 |
else:
|
134 |
-
final_score = cross_score
|
135 |
|
136 |
from pipeline import FINAL_SCORE_THRESHOLD
|
137 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
@@ -151,11 +145,6 @@ def compare_items():
|
|
151 |
print("="*50)
|
152 |
return jsonify({"matches": final_results}), 200
|
153 |
|
154 |
-
except Exception as e:
|
155 |
-
print(f"❌ Error in /compare: {e}")
|
156 |
-
traceback.print_exc()
|
157 |
-
return jsonify({"error": str(e)}), 500
|
158 |
-
|
159 |
except Exception as e:
|
160 |
print(f"❌ Error in /compare: {e}")
|
161 |
traceback.print_exc()
|
|
|
6 |
# Import app, models, and logic functions
|
7 |
from pipeline import app, models, logic
|
8 |
|
9 |
+
# This constant should be at the top level, after imports
|
10 |
+
TOP_N_CANDIDATES = 20
|
11 |
+
|
12 |
@app.route('/process', methods=['POST'])
|
13 |
def process_item():
|
14 |
print("\n" + "="*50)
|
|
|
19 |
|
20 |
object_name = data.get('objectName')
|
21 |
description = data.get('objectDescription')
|
22 |
+
image_url = data.get('objectImage')
|
23 |
|
24 |
if not all([object_name, description]):
|
25 |
return jsonify({"error": "objectName and objectDescription are required."}), 400
|
|
|
50 |
traceback.print_exc()
|
51 |
return jsonify({"error": str(e)}), 500
|
52 |
|
|
|
|
|
|
|
|
|
53 |
@app.route('/compare', methods=['POST'])
|
54 |
def compare_items():
|
55 |
print("\n" + "="*50)
|
|
|
63 |
|
64 |
if not all([query_item, search_list]):
|
65 |
return jsonify({"error": "queryItem and searchList are required."}), 400
|
66 |
+
|
67 |
# === STAGE 1: FAST RETRIEVAL (using Bi-Encoder) ===
|
68 |
print(f"--- Stage 1: Retrieving top candidates from {len(search_list)} items... ---")
|
69 |
+
|
70 |
initial_candidates = []
|
71 |
query_text_emb = np.array(query_item['text_embedding'])
|
72 |
|
73 |
for item in search_list:
|
74 |
text_emb_found = np.array(item['text_embedding'])
|
75 |
text_score = logic.cosine_similarity(query_text_emb, text_emb_found)
|
|
|
|
|
|
|
76 |
initial_candidates.append({"item": item, "initial_score": text_score})
|
77 |
|
78 |
# Sort by the initial score and keep the best ones
|
|
|
87 |
|
88 |
print(f"\n--- Stage 2: Re-ranking top {len(top_candidates)} candidates... ---")
|
89 |
query_description = query_item['objectDescription']
|
90 |
+
|
91 |
# Create pairs of [query, candidate_description] for the cross-encoder
|
92 |
rerank_pairs = [(query_description, cand['item']['objectDescription']) for cand in top_candidates]
|
93 |
+
|
94 |
# Get new, highly accurate scores from the cross-encoder
|
95 |
cross_encoder_scores = models['cross_encoder'].predict(rerank_pairs)
|
96 |
|
|
|
105 |
# Now we calculate the final image and combined score, just like before
|
106 |
has_query_image = 'shape_features' in query_item and query_item['shape_features']
|
107 |
has_item_image = 'shape_features' in item and item['shape_features']
|
108 |
+
|
109 |
if has_query_image and has_item_image:
|
|
|
110 |
from pipeline import FEATURE_WEIGHTS
|
111 |
query_shape = np.array(query_item['shape_features'])
|
112 |
query_color = np.array(query_item['color_features']).astype("float32")
|
|
|
122 |
FEATURE_WEIGHTS["color"] * color_score +
|
123 |
FEATURE_WEIGHTS["texture"] * texture_score)
|
124 |
image_score = logic.stretch_image_score(raw_image_score)
|
125 |
+
final_score = 0.4 * image_score + 0.6 * cross_score
|
|
|
126 |
print(f" - Image Score: {image_score:.4f} | Final Re-ranked Score: {final_score:.4f}")
|
127 |
else:
|
128 |
+
final_score = cross_score
|
129 |
|
130 |
from pipeline import FINAL_SCORE_THRESHOLD
|
131 |
if final_score >= FINAL_SCORE_THRESHOLD:
|
|
|
145 |
print("="*50)
|
146 |
return jsonify({"matches": final_results}), 200
|
147 |
|
|
|
|
|
|
|
|
|
|
|
148 |
except Exception as e:
|
149 |
print(f"❌ Error in /compare: {e}")
|
150 |
traceback.print_exc()
|