File size: 27,674 Bytes
82af392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import json
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel, AutoConfig
import numpy as np
from tqdm import tqdm
import re
from typing import List, Tuple, Dict, Any
import warnings
import logging
import os
from datetime import datetime
from sklearn.utils.class_weight import compute_class_weight
import torch.nn.functional as F

# Disable tokenizer parallelism to avoid forking warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"

warnings.filterwarnings('ignore')

def set_random_seeds(seed=42):
    """Set random seeds for reproducibility"""
    import random
    import numpy as np
    import torch
    
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # For multi-GPU
    
    # Make CuDNN deterministic (slower but reproducible)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

def setup_logging(log_dir='data/logs'):
    """Setup logging configuration"""
    # Create logs directory if it doesn't exist
    os.makedirs(log_dir, exist_ok=True)
    
    # Create timestamp for log file
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    log_file = os.path.join(log_dir, f'training_log_{timestamp}.log')
    
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,  # Back to INFO level
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()  # Also print to console
        ]
    )
    
    logger = logging.getLogger(__name__)
    logger.info(f"Logging initialized. Log file: {log_file}")
    return logger, log_file

def check_gpu_availability():
    """Check and print GPU availability information"""
    logger = logging.getLogger(__name__)
    logger.info("=== GPU Availability Check ===")
    
    if torch.backends.mps.is_available():
        logger.info("βœ“ MPS (Apple Silicon GPU) is available")
        if torch.backends.mps.is_built():
            logger.info("βœ“ MPS is built into PyTorch")
        else:
            logger.info("βœ— MPS is not built into PyTorch")
    else:
        logger.info("βœ— MPS (Apple Silicon GPU) is not available")
    
    if torch.cuda.is_available():
        logger.info(f"βœ“ CUDA is available (GPU count: {torch.cuda.device_count()})")
    else:
        logger.info("βœ— CUDA is not available")
    
    logger.info(f"PyTorch version: {torch.__version__}")
    logger.info("=" * 50)

def calculate_class_weights(dataset):
    """Calculate class weights for imbalanced dataset using BERT paper approach"""
    logger = logging.getLogger(__name__)
    
    # Collect all labels from the dataset (BERT approach: only first subtokens have real labels)
    all_labels = []
    for window_data in dataset.processed_data:
        # Filter out -100 labels (special tokens + subsequent subtokens of same word)
        # This gives us true word-level class distribution
        valid_labels = [label for label in window_data['subword_labels'] if label != -100]
        all_labels.extend(valid_labels)
    
    # Convert to numpy array
    y = np.array(all_labels)
    
    # Calculate class weights using sklearn
    classes = np.unique(y)
    class_weights = compute_class_weight('balanced', classes=classes, y=y)
    
    # Create weight tensor
    weight_tensor = torch.FloatTensor(class_weights)
    
    logger.info(f"Word-level class distribution: {np.bincount(y)}")
    logger.info(f"Class 0 (Non-instruction words): {np.sum(y == 0)} words ({np.sum(y == 0)/len(y)*100:.1f}%)")
    logger.info(f"Class 1 (Instruction words): {np.sum(y == 1)} words ({np.sum(y == 1)/len(y)*100:.1f}%)")
    logger.info(f"Calculated class weights (word-level): {class_weights}")
    logger.info(f"  Weight for class 0 (Non-instruction): {class_weights[0]:.4f}")
    logger.info(f"  Weight for class 1 (Instruction): {class_weights[1]:.4f}")
    
    return weight_tensor

class FocalLoss(nn.Module):
    """Focal Loss for addressing class imbalance"""
    def __init__(self, alpha=1, gamma=2, ignore_index=-100):
        super(FocalLoss, self).__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.ignore_index = ignore_index
        
    def forward(self, inputs, targets):
        # Flatten inputs and targets
        inputs = inputs.view(-1, inputs.size(-1))
        targets = targets.view(-1)
        
        # Create mask for non-ignored indices
        mask = targets != self.ignore_index
        targets = targets[mask]
        inputs = inputs[mask]
        
        if len(targets) == 0:
            return torch.tensor(0.0, requires_grad=True, device=inputs.device)
        
        # Calculate cross entropy
        ce_loss = F.cross_entropy(inputs, targets, reduction='none')
        
        # Calculate pt
        pt = torch.exp(-ce_loss)
        
        # Calculate focal loss
        focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
        
        return focal_loss.mean()

class InstructionDataset(Dataset):
    def __init__(self, data_path: str, tokenizer, max_length: int = 512, is_training: bool = True, 
                 window_size: int = 512, overlap: int = 100):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.is_training = is_training
        self.window_size = window_size
        self.overlap = overlap
        
        # Load and process data
        self.raw_data = self._load_and_process_data(data_path)
        
        # Create sliding windows at subword level (eliminates all data loss)
        self.processed_data = self._create_subword_sliding_windows(self.raw_data)
        
    def _load_and_process_data(self, data_path: str) -> List[Dict[str, Any]]:
        """Load JSONL data and process it for token classification"""
        logger = logging.getLogger(__name__)
        processed_data = []
        skipped_count = 0
        sanity_check_failed = 0
        total_instruction_tokens = 0
        total_non_instruction_tokens = 0
        
        logger.info(f"Loading data from: {data_path}")
        
        with open(data_path, 'r', encoding='utf-8') as f:
            for line_num, line in enumerate(f, 1):
                try:
                    data = json.loads(line.strip())
                    
                    # Skip data points that failed sanity check
                    sanity_check = data.get('sanity_check', False)  # Default to False if not present
                    if sanity_check is False:
                        sanity_check_failed += 1
                        continue
                    
                    # Extract labeled text
                    labeled_text = data.get('label_text', '')
                    # Remove <text>...</text> tags if present
                    if labeled_text.startswith("<text>") and labeled_text.endswith("</text>"):
                        labeled_text = labeled_text[len("<text>"):-len("</text>")]
                        labeled_text = labeled_text.strip()
                    sample_id = data.get('id', f'sample_{line_num}')
                    
                    # Process the tagged text
                    processed_sample = self._process_tagged_text(labeled_text, sample_id)
                    
                    if processed_sample is not None:
                        processed_data.append(processed_sample)
                        # Count token distribution for debugging
                        labels = processed_sample['labels']
                        sample_instruction_tokens = sum(1 for label in labels if label == 1)
                        total_instruction_tokens += sample_instruction_tokens
                        total_non_instruction_tokens += len(labels) - sample_instruction_tokens
                    else:
                        skipped_count += 1
                        
                except Exception as e:
                    logger.error(f"Error processing line {line_num}: {e}")
                    skipped_count += 1
        
        logger.info(f"Successfully processed {len(processed_data)} samples")
        logger.info(f"Skipped {skipped_count} samples due to errors or malformed data")
        logger.info(f"Skipped {sanity_check_failed} samples due to failed sanity check")
        logger.info(f"Token distribution - Instruction: {total_instruction_tokens}, Non-instruction: {total_non_instruction_tokens}")
        
        if total_instruction_tokens == 0:
            logger.warning("No instruction tokens found! This will cause training issues.")
        if total_non_instruction_tokens == 0:
            logger.warning("No non-instruction tokens found! This will cause training issues.")
        
        return processed_data
    
    def _process_tagged_text(self, labeled_text: str, sample_id: str) -> Dict[str, Any] | None:
        """Process tagged text to extract tokens and labels"""
        logger = logging.getLogger(__name__)
        try:
            # Keep original casing since XLM-RoBERTa is case-sensitive
            # labeled_text = labeled_text.lower()  # Removed for cased model
            
            # Find all instruction tags
            instruction_pattern = r'<instruction>(.*?)</instruction>'
            matches = list(re.finditer(instruction_pattern, labeled_text, re.DOTALL))
            
            # Check for malformed tags or edge cases
            if '<instruction>' in labeled_text and '</instruction>' not in labeled_text:
                return None
            if '</instruction>' in labeled_text and '<instruction>' not in labeled_text:
                return None
            
            # Create character-level labels
            char_labels = [0] * len(labeled_text)
            
            # Mark instruction characters
            for match in matches:
                start, end = match.span()
                # Mark the content inside tags as instruction (1)
                content_start = start + len('<instruction>')
                content_end = end - len('</instruction>')
                for i in range(content_start, content_end):
                    char_labels[i] = 1
            
            # Remove tags and adjust labels
            clean_text = re.sub(instruction_pattern, r'\1', labeled_text)
            
            # Recalculate labels for clean text
            clean_char_labels = []
            original_idx = 0
            
            for char in clean_text:
                # Skip over tag characters in original text
                while original_idx < len(labeled_text) and labeled_text[original_idx] in '<>/':
                    if labeled_text[original_idx:original_idx+13] == '<instruction>':
                        original_idx += 13
                    elif labeled_text[original_idx:original_idx+14] == '</instruction>':
                        original_idx += 14
                    else:
                        original_idx += 1
                
                if original_idx < len(char_labels):
                    clean_char_labels.append(char_labels[original_idx])
                else:
                    clean_char_labels.append(0)
                original_idx += 1
            
            # Tokenize and align labels
            tokens = clean_text.split()
            token_labels = []
            
            char_idx = 0
            for token in tokens:
                # Skip whitespace
                while char_idx < len(clean_text) and clean_text[char_idx].isspace():
                    char_idx += 1
                
                # Check if any character in this token is labeled as instruction
                token_is_instruction = False
                for i in range(len(token)):
                    if char_idx + i < len(clean_char_labels) and clean_char_labels[char_idx + i] == 1:
                        token_is_instruction = True
                        break
                
                token_labels.append(1 if token_is_instruction else 0)
                char_idx += len(token)
            
            return {
                'id': sample_id,
                'tokens': tokens,
                'labels': token_labels,
                'original_text': clean_text
            }
            
        except Exception as e:
            logger.error(f"Error processing sample {sample_id}: {e}")
            return None
    
    def _create_subword_sliding_windows(self, raw_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Create sliding windows at subword level - eliminates all data loss and mismatch issues"""
        logger = logging.getLogger(__name__)
        windowed_data = []
        
        logger.info(f"Creating subword-level sliding windows:")
        logger.info(f"  Window size: {self.max_length} subword tokens")
        logger.info(f"  Overlap: {self.overlap} subword tokens")
        logger.info(f"  Label strategy: BERT paper approach (first subtoken only)")
        
        total_original_samples = len(raw_data)
        total_windows = 0
        samples_with_multiple_windows = 0
        
        # Word split tracking
        total_words_processed = 0
        total_words_split_across_windows = 0
        samples_with_split_words = 0
        
        for sample in raw_data:
            words = sample['tokens']
            word_labels = sample['labels']
            sample_id = sample['id']
            encoded = self.tokenizer(
                words,
                is_split_into_words=True,
                add_special_tokens=True,  # Include [CLS], [SEP]
                truncation=False,  # We handle long sequences with sliding windows
                padding=False,
                return_tensors='pt'
            )
            subword_tokens = encoded['input_ids'][0].tolist()
            word_ids = encoded.word_ids()
            
            # Step 2: Create aligned subword labels (BERT paper approach)
            # Only the FIRST subtoken of each word gets the real label, rest get -100
            subword_labels = []
            prev_word_id = None
            
            for word_id in word_ids:
                if word_id is None:
                    subword_labels.append(-100)  # Special tokens [CLS], [SEP]
                elif word_id != prev_word_id:
                    # First subtoken of a new word - assign the real label
                    subword_labels.append(word_labels[word_id])
                    prev_word_id = word_id
                else:
                    # Subsequent subtoken of the same word - assign dummy label
                    subword_labels.append(-100)
                    # prev_word_id remains the same
            
            # Step 3: Create sliding windows at subword level
            if len(subword_tokens) <= self.max_length:
                # Single window - no word splits possible
                windowed_data.append({
                    'subword_tokens': subword_tokens,
                    'subword_labels': subword_labels,
                    'original_words': words,
                    'original_labels': word_labels,
                    'sample_id': sample_id,
                    'window_id': 0,
                    'total_windows': 1,
                    'window_start': 0,
                    'window_end': len(subword_tokens),
                    'original_text': sample['original_text']
                })
                total_windows += 1
                total_words_processed += len(words)
            else:
                # Multiple windows needed
                step = self.max_length - self.overlap
                window_count = 0
                split_words_this_sample = set()
                
                for start in range(0, len(subword_tokens), step):
                    end = min(start + self.max_length, len(subword_tokens))
                    
                    # Extract subword window
                    window_subword_tokens = subword_tokens[start:end]
                    window_subword_labels = subword_labels[start:end]
                    
                    # Track word splits for this window
                    window_word_ids = word_ids[start:end] if word_ids else []
                    window_words_set = set(wid for wid in window_word_ids if wid is not None)
                    
                    # Find which words are split across window boundaries
                    for word_idx in window_words_set:
                        if word_idx is not None:
                            # Check if this word's subwords extend beyond current window
                            word_subword_positions = [i for i, wid in enumerate(word_ids) if wid == word_idx]
                            word_start_pos = min(word_subword_positions)
                            word_end_pos = max(word_subword_positions)
                            
                            # Word is split if it extends beyond current window boundaries
                            if word_start_pos < start or word_end_pos >= end:
                                split_words_this_sample.add(word_idx)
                    
                    # Get original words for this window (for debugging/inspection)
                    window_word_indices = list(window_words_set)
                    window_original_words = [words[i] for i in window_word_indices if i < len(words)]
                    window_original_labels = [word_labels[i] for i in window_word_indices if i < len(words)]
                    
                    windowed_data.append({
                        'subword_tokens': window_subword_tokens,
                        'subword_labels': window_subword_labels,
                        'original_words': window_original_words,  # For reference only
                        'original_labels': window_original_labels,  # For reference only
                        'sample_id': sample_id,
                        'window_id': window_count,
                        'total_windows': -1,  # Will be filled later
                        'window_start': start,
                        'window_end': end,
                        'original_text': sample['original_text']
                    })
                    
                    window_count += 1
                    total_windows += 1
                    
                    # Break if we've covered all subword tokens
                    if end >= len(subword_tokens):
                        break
                
                # Update total_windows for this sample
                for i in range(len(windowed_data) - window_count, len(windowed_data)):
                    windowed_data[i]['total_windows'] = window_count
                
                # Track word split statistics
                total_words_processed += len(words)
                total_words_split_across_windows += len(split_words_this_sample)
                
                if len(split_words_this_sample) > 0:
                    samples_with_split_words += 1
                
                if window_count > 1:
                    samples_with_multiple_windows += 1
        
        # Calculate word split statistics
        word_split_percentage = (total_words_split_across_windows / total_words_processed * 100) if total_words_processed > 0 else 0
        
        logger.info(f"=== Subword Sliding Window Statistics ===")
        logger.info(f"  Original samples: {total_original_samples}")
        logger.info(f"  Total windows created: {total_windows}")
        logger.info(f"  Samples split into multiple windows: {samples_with_multiple_windows}")
        logger.info(f"  Average windows per sample: {total_windows / total_original_samples:.2f}")
        
        logger.info(f"=== Word Split Analysis ===")
        logger.info(f"  Total words processed: {total_words_processed:,}")
        logger.info(f"  Words split across windows: {total_words_split_across_windows:,}")
        logger.info(f"  Word split rate: {word_split_percentage:.2f}%")
        logger.info(f"  Samples with split words: {samples_with_split_words} / {total_original_samples}")
        
        if word_split_percentage > 10.0:
            logger.warning(f"  HIGH WORD SPLIT RATE: {word_split_percentage:.1f}% - consider larger overlap")
        elif word_split_percentage > 5.0:
            logger.warning(f"  Moderate word splitting: {word_split_percentage:.1f}% - monitor model performance")
        else:
            logger.info(f"  Excellent word preservation: {100 - word_split_percentage:.1f}% of words intact")
        
        logger.info(f"βœ… ZERO DATA LOSS: All subword tokens processed exactly once")
        logger.info(f"πŸ“‹ BERT PAPER APPROACH: Only first subtokens carry labels for training/evaluation")
        
        return windowed_data
    
    def __len__(self):
        return len(self.processed_data)
    
    def __getitem__(self, idx):
        window_data = self.processed_data[idx]
        subword_tokens = window_data['subword_tokens']
        subword_labels = window_data['subword_labels']
        
        # Convert subword tokens to padded tensors (no tokenization needed!)
        input_ids = subword_tokens[:self.max_length]  # Guaranteed to fit
        
        # Pad to max_length if needed
        pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
        while len(input_ids) < self.max_length:
            input_ids.append(pad_token_id)
        
        # Create attention mask (1 for real tokens, 0 for padding)
        attention_mask = [1 if token != pad_token_id else 0 for token in input_ids]
        
        # Pad labels to match
        labels = subword_labels[:self.max_length]
        while len(labels) < self.max_length:
            labels.append(-100)  # Ignore padding tokens in loss
        
        return {
            'input_ids': torch.tensor(input_ids, dtype=torch.long),
            'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
            'labels': torch.tensor(labels, dtype=torch.long),
            'original_tokens': window_data['original_words'],  # Original words for reference
            'original_labels': window_data['original_labels'],  # Original word labels
            # Add window metadata for evaluation aggregation
            'sample_id': window_data['sample_id'],
            'window_id': window_data['window_id'],
            'total_windows': window_data['total_windows'],
            'window_start': window_data['window_start'],
            'window_end': window_data['window_end']
        }

class TransformerInstructionClassifier(nn.Module):
    def __init__(self, model_name: str = 'xlm-roberta-base', num_labels: int = 2, 
                 class_weights=None, loss_type='weighted_ce', dropout: float = 0.1):
        super().__init__()
        self.num_labels = num_labels
        self.loss_type = loss_type
        
        # Load pre-trained transformer model (XLM-RoBERTa, ModernBERT, etc.)
        self.bert = AutoModel.from_pretrained(model_name)
        self.dropout = nn.Dropout(dropout)
        
        # Classification head
        self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
        
        # Setup loss function based on type
        if loss_type == 'weighted_ce':
            self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100, weight=class_weights)
        elif loss_type == 'focal':
            self.loss_fct = FocalLoss(alpha=1, gamma=2, ignore_index=-100)
        else:
            self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
        
    def forward(self, input_ids, attention_mask, labels=None):
        # Get BERT outputs
        outputs = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        
        # Get last hidden state
        last_hidden_state = outputs.last_hidden_state
        
        # Apply dropout
        last_hidden_state = self.dropout(last_hidden_state)
        
        # Classification
        logits = self.classifier(last_hidden_state)
        
        loss = None
        if labels is not None:
            logger = logging.getLogger(__name__)
            
            # Check for NaN in inputs before loss calculation
            if torch.isnan(logits).any():
                logger.warning("NaN detected in logits!")
            if torch.isnan(labels.float()).any():
                logger.warning("NaN detected in labels!")
            
            loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            
            # Check if loss is NaN
            if torch.isnan(loss):
                logger.warning("NaN loss detected!")
                logger.warning(f"Logits stats: min={logits.min()}, max={logits.max()}, mean={logits.mean()}")
                logger.warning(f"Labels unique values: {torch.unique(labels[labels != -100])}")
        
        return {
            'loss': loss,
            'logits': logits
        }

def collate_fn(batch):
    """Custom collate function for DataLoader"""
    input_ids = torch.stack([item['input_ids'] for item in batch])
    attention_mask = torch.stack([item['attention_mask'] for item in batch])
    labels = torch.stack([item['labels'] for item in batch])
    
    return {
        'input_ids': input_ids,
        'attention_mask': attention_mask,
        'labels': labels,
        'original_tokens': [item['original_tokens'] for item in batch],
        'original_labels': [item['original_labels'] for item in batch],
        # Add window metadata
        'sample_ids': [item['sample_id'] for item in batch],
        'window_ids': [item['window_id'] for item in batch],
        'total_windows': [item['total_windows'] for item in batch],
        'window_starts': [item['window_start'] for item in batch],
        'window_ends': [item['window_end'] for item in batch]
    }

def predict_instructions(model, tokenizer, text: str, device=None):
    """Predict instructions in a given text"""
    # Auto-detect device if not provided
    if device is None:
        if torch.backends.mps.is_available():
            device = torch.device('mps')
        elif torch.cuda.is_available():
            device = torch.device('cuda')
        else:
            device = torch.device('cpu')
    
    model.eval()
    
    # Keep original casing since XLM-RoBERTa is case-sensitive
    # text = text.lower()  # Removed for cased model
    tokens = text.split()
    
    # Tokenize
    encoded = tokenizer(
        tokens,
        is_split_into_words=True,
        padding='max_length',
        truncation=True,
        max_length=512,
        return_tensors='pt'
    )
    
    input_ids = encoded['input_ids'].to(device)
    attention_mask = encoded['attention_mask'].to(device)
    
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        predictions = torch.argmax(outputs['logits'], dim=-1)
    
    # Align predictions with original tokens
    word_ids = encoded.word_ids()
    word_predictions = []
    
    prev_word_id = None
    for i, word_id in enumerate(word_ids):
        if word_id is not None and word_id != prev_word_id:
            if word_id < len(tokens):
                word_predictions.append(predictions[0][i].item())
            prev_word_id = word_id
    
    return tokens, word_predictions

def get_device():
    """Get the best available device"""
    if torch.backends.mps.is_available():
        return torch.device('mps')
    elif torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')