Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,674 Bytes
82af392 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import json
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel, AutoConfig
import numpy as np
from tqdm import tqdm
import re
from typing import List, Tuple, Dict, Any
import warnings
import logging
import os
from datetime import datetime
from sklearn.utils.class_weight import compute_class_weight
import torch.nn.functional as F
# Disable tokenizer parallelism to avoid forking warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
def set_random_seeds(seed=42):
"""Set random seeds for reproducibility"""
import random
import numpy as np
import torch
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # For multi-GPU
# Make CuDNN deterministic (slower but reproducible)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_logging(log_dir='data/logs'):
"""Setup logging configuration"""
# Create logs directory if it doesn't exist
os.makedirs(log_dir, exist_ok=True)
# Create timestamp for log file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = os.path.join(log_dir, f'training_log_{timestamp}.log')
# Configure logging
logging.basicConfig(
level=logging.INFO, # Back to INFO level
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler() # Also print to console
]
)
logger = logging.getLogger(__name__)
logger.info(f"Logging initialized. Log file: {log_file}")
return logger, log_file
def check_gpu_availability():
"""Check and print GPU availability information"""
logger = logging.getLogger(__name__)
logger.info("=== GPU Availability Check ===")
if torch.backends.mps.is_available():
logger.info("β MPS (Apple Silicon GPU) is available")
if torch.backends.mps.is_built():
logger.info("β MPS is built into PyTorch")
else:
logger.info("β MPS is not built into PyTorch")
else:
logger.info("β MPS (Apple Silicon GPU) is not available")
if torch.cuda.is_available():
logger.info(f"β CUDA is available (GPU count: {torch.cuda.device_count()})")
else:
logger.info("β CUDA is not available")
logger.info(f"PyTorch version: {torch.__version__}")
logger.info("=" * 50)
def calculate_class_weights(dataset):
"""Calculate class weights for imbalanced dataset using BERT paper approach"""
logger = logging.getLogger(__name__)
# Collect all labels from the dataset (BERT approach: only first subtokens have real labels)
all_labels = []
for window_data in dataset.processed_data:
# Filter out -100 labels (special tokens + subsequent subtokens of same word)
# This gives us true word-level class distribution
valid_labels = [label for label in window_data['subword_labels'] if label != -100]
all_labels.extend(valid_labels)
# Convert to numpy array
y = np.array(all_labels)
# Calculate class weights using sklearn
classes = np.unique(y)
class_weights = compute_class_weight('balanced', classes=classes, y=y)
# Create weight tensor
weight_tensor = torch.FloatTensor(class_weights)
logger.info(f"Word-level class distribution: {np.bincount(y)}")
logger.info(f"Class 0 (Non-instruction words): {np.sum(y == 0)} words ({np.sum(y == 0)/len(y)*100:.1f}%)")
logger.info(f"Class 1 (Instruction words): {np.sum(y == 1)} words ({np.sum(y == 1)/len(y)*100:.1f}%)")
logger.info(f"Calculated class weights (word-level): {class_weights}")
logger.info(f" Weight for class 0 (Non-instruction): {class_weights[0]:.4f}")
logger.info(f" Weight for class 1 (Instruction): {class_weights[1]:.4f}")
return weight_tensor
class FocalLoss(nn.Module):
"""Focal Loss for addressing class imbalance"""
def __init__(self, alpha=1, gamma=2, ignore_index=-100):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.ignore_index = ignore_index
def forward(self, inputs, targets):
# Flatten inputs and targets
inputs = inputs.view(-1, inputs.size(-1))
targets = targets.view(-1)
# Create mask for non-ignored indices
mask = targets != self.ignore_index
targets = targets[mask]
inputs = inputs[mask]
if len(targets) == 0:
return torch.tensor(0.0, requires_grad=True, device=inputs.device)
# Calculate cross entropy
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
# Calculate pt
pt = torch.exp(-ce_loss)
# Calculate focal loss
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
return focal_loss.mean()
class InstructionDataset(Dataset):
def __init__(self, data_path: str, tokenizer, max_length: int = 512, is_training: bool = True,
window_size: int = 512, overlap: int = 100):
self.tokenizer = tokenizer
self.max_length = max_length
self.is_training = is_training
self.window_size = window_size
self.overlap = overlap
# Load and process data
self.raw_data = self._load_and_process_data(data_path)
# Create sliding windows at subword level (eliminates all data loss)
self.processed_data = self._create_subword_sliding_windows(self.raw_data)
def _load_and_process_data(self, data_path: str) -> List[Dict[str, Any]]:
"""Load JSONL data and process it for token classification"""
logger = logging.getLogger(__name__)
processed_data = []
skipped_count = 0
sanity_check_failed = 0
total_instruction_tokens = 0
total_non_instruction_tokens = 0
logger.info(f"Loading data from: {data_path}")
with open(data_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
try:
data = json.loads(line.strip())
# Skip data points that failed sanity check
sanity_check = data.get('sanity_check', False) # Default to False if not present
if sanity_check is False:
sanity_check_failed += 1
continue
# Extract labeled text
labeled_text = data.get('label_text', '')
# Remove <text>...</text> tags if present
if labeled_text.startswith("<text>") and labeled_text.endswith("</text>"):
labeled_text = labeled_text[len("<text>"):-len("</text>")]
labeled_text = labeled_text.strip()
sample_id = data.get('id', f'sample_{line_num}')
# Process the tagged text
processed_sample = self._process_tagged_text(labeled_text, sample_id)
if processed_sample is not None:
processed_data.append(processed_sample)
# Count token distribution for debugging
labels = processed_sample['labels']
sample_instruction_tokens = sum(1 for label in labels if label == 1)
total_instruction_tokens += sample_instruction_tokens
total_non_instruction_tokens += len(labels) - sample_instruction_tokens
else:
skipped_count += 1
except Exception as e:
logger.error(f"Error processing line {line_num}: {e}")
skipped_count += 1
logger.info(f"Successfully processed {len(processed_data)} samples")
logger.info(f"Skipped {skipped_count} samples due to errors or malformed data")
logger.info(f"Skipped {sanity_check_failed} samples due to failed sanity check")
logger.info(f"Token distribution - Instruction: {total_instruction_tokens}, Non-instruction: {total_non_instruction_tokens}")
if total_instruction_tokens == 0:
logger.warning("No instruction tokens found! This will cause training issues.")
if total_non_instruction_tokens == 0:
logger.warning("No non-instruction tokens found! This will cause training issues.")
return processed_data
def _process_tagged_text(self, labeled_text: str, sample_id: str) -> Dict[str, Any] | None:
"""Process tagged text to extract tokens and labels"""
logger = logging.getLogger(__name__)
try:
# Keep original casing since XLM-RoBERTa is case-sensitive
# labeled_text = labeled_text.lower() # Removed for cased model
# Find all instruction tags
instruction_pattern = r'<instruction>(.*?)</instruction>'
matches = list(re.finditer(instruction_pattern, labeled_text, re.DOTALL))
# Check for malformed tags or edge cases
if '<instruction>' in labeled_text and '</instruction>' not in labeled_text:
return None
if '</instruction>' in labeled_text and '<instruction>' not in labeled_text:
return None
# Create character-level labels
char_labels = [0] * len(labeled_text)
# Mark instruction characters
for match in matches:
start, end = match.span()
# Mark the content inside tags as instruction (1)
content_start = start + len('<instruction>')
content_end = end - len('</instruction>')
for i in range(content_start, content_end):
char_labels[i] = 1
# Remove tags and adjust labels
clean_text = re.sub(instruction_pattern, r'\1', labeled_text)
# Recalculate labels for clean text
clean_char_labels = []
original_idx = 0
for char in clean_text:
# Skip over tag characters in original text
while original_idx < len(labeled_text) and labeled_text[original_idx] in '<>/':
if labeled_text[original_idx:original_idx+13] == '<instruction>':
original_idx += 13
elif labeled_text[original_idx:original_idx+14] == '</instruction>':
original_idx += 14
else:
original_idx += 1
if original_idx < len(char_labels):
clean_char_labels.append(char_labels[original_idx])
else:
clean_char_labels.append(0)
original_idx += 1
# Tokenize and align labels
tokens = clean_text.split()
token_labels = []
char_idx = 0
for token in tokens:
# Skip whitespace
while char_idx < len(clean_text) and clean_text[char_idx].isspace():
char_idx += 1
# Check if any character in this token is labeled as instruction
token_is_instruction = False
for i in range(len(token)):
if char_idx + i < len(clean_char_labels) and clean_char_labels[char_idx + i] == 1:
token_is_instruction = True
break
token_labels.append(1 if token_is_instruction else 0)
char_idx += len(token)
return {
'id': sample_id,
'tokens': tokens,
'labels': token_labels,
'original_text': clean_text
}
except Exception as e:
logger.error(f"Error processing sample {sample_id}: {e}")
return None
def _create_subword_sliding_windows(self, raw_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Create sliding windows at subword level - eliminates all data loss and mismatch issues"""
logger = logging.getLogger(__name__)
windowed_data = []
logger.info(f"Creating subword-level sliding windows:")
logger.info(f" Window size: {self.max_length} subword tokens")
logger.info(f" Overlap: {self.overlap} subword tokens")
logger.info(f" Label strategy: BERT paper approach (first subtoken only)")
total_original_samples = len(raw_data)
total_windows = 0
samples_with_multiple_windows = 0
# Word split tracking
total_words_processed = 0
total_words_split_across_windows = 0
samples_with_split_words = 0
for sample in raw_data:
words = sample['tokens']
word_labels = sample['labels']
sample_id = sample['id']
encoded = self.tokenizer(
words,
is_split_into_words=True,
add_special_tokens=True, # Include [CLS], [SEP]
truncation=False, # We handle long sequences with sliding windows
padding=False,
return_tensors='pt'
)
subword_tokens = encoded['input_ids'][0].tolist()
word_ids = encoded.word_ids()
# Step 2: Create aligned subword labels (BERT paper approach)
# Only the FIRST subtoken of each word gets the real label, rest get -100
subword_labels = []
prev_word_id = None
for word_id in word_ids:
if word_id is None:
subword_labels.append(-100) # Special tokens [CLS], [SEP]
elif word_id != prev_word_id:
# First subtoken of a new word - assign the real label
subword_labels.append(word_labels[word_id])
prev_word_id = word_id
else:
# Subsequent subtoken of the same word - assign dummy label
subword_labels.append(-100)
# prev_word_id remains the same
# Step 3: Create sliding windows at subword level
if len(subword_tokens) <= self.max_length:
# Single window - no word splits possible
windowed_data.append({
'subword_tokens': subword_tokens,
'subword_labels': subword_labels,
'original_words': words,
'original_labels': word_labels,
'sample_id': sample_id,
'window_id': 0,
'total_windows': 1,
'window_start': 0,
'window_end': len(subword_tokens),
'original_text': sample['original_text']
})
total_windows += 1
total_words_processed += len(words)
else:
# Multiple windows needed
step = self.max_length - self.overlap
window_count = 0
split_words_this_sample = set()
for start in range(0, len(subword_tokens), step):
end = min(start + self.max_length, len(subword_tokens))
# Extract subword window
window_subword_tokens = subword_tokens[start:end]
window_subword_labels = subword_labels[start:end]
# Track word splits for this window
window_word_ids = word_ids[start:end] if word_ids else []
window_words_set = set(wid for wid in window_word_ids if wid is not None)
# Find which words are split across window boundaries
for word_idx in window_words_set:
if word_idx is not None:
# Check if this word's subwords extend beyond current window
word_subword_positions = [i for i, wid in enumerate(word_ids) if wid == word_idx]
word_start_pos = min(word_subword_positions)
word_end_pos = max(word_subword_positions)
# Word is split if it extends beyond current window boundaries
if word_start_pos < start or word_end_pos >= end:
split_words_this_sample.add(word_idx)
# Get original words for this window (for debugging/inspection)
window_word_indices = list(window_words_set)
window_original_words = [words[i] for i in window_word_indices if i < len(words)]
window_original_labels = [word_labels[i] for i in window_word_indices if i < len(words)]
windowed_data.append({
'subword_tokens': window_subword_tokens,
'subword_labels': window_subword_labels,
'original_words': window_original_words, # For reference only
'original_labels': window_original_labels, # For reference only
'sample_id': sample_id,
'window_id': window_count,
'total_windows': -1, # Will be filled later
'window_start': start,
'window_end': end,
'original_text': sample['original_text']
})
window_count += 1
total_windows += 1
# Break if we've covered all subword tokens
if end >= len(subword_tokens):
break
# Update total_windows for this sample
for i in range(len(windowed_data) - window_count, len(windowed_data)):
windowed_data[i]['total_windows'] = window_count
# Track word split statistics
total_words_processed += len(words)
total_words_split_across_windows += len(split_words_this_sample)
if len(split_words_this_sample) > 0:
samples_with_split_words += 1
if window_count > 1:
samples_with_multiple_windows += 1
# Calculate word split statistics
word_split_percentage = (total_words_split_across_windows / total_words_processed * 100) if total_words_processed > 0 else 0
logger.info(f"=== Subword Sliding Window Statistics ===")
logger.info(f" Original samples: {total_original_samples}")
logger.info(f" Total windows created: {total_windows}")
logger.info(f" Samples split into multiple windows: {samples_with_multiple_windows}")
logger.info(f" Average windows per sample: {total_windows / total_original_samples:.2f}")
logger.info(f"=== Word Split Analysis ===")
logger.info(f" Total words processed: {total_words_processed:,}")
logger.info(f" Words split across windows: {total_words_split_across_windows:,}")
logger.info(f" Word split rate: {word_split_percentage:.2f}%")
logger.info(f" Samples with split words: {samples_with_split_words} / {total_original_samples}")
if word_split_percentage > 10.0:
logger.warning(f" HIGH WORD SPLIT RATE: {word_split_percentage:.1f}% - consider larger overlap")
elif word_split_percentage > 5.0:
logger.warning(f" Moderate word splitting: {word_split_percentage:.1f}% - monitor model performance")
else:
logger.info(f" Excellent word preservation: {100 - word_split_percentage:.1f}% of words intact")
logger.info(f"β
ZERO DATA LOSS: All subword tokens processed exactly once")
logger.info(f"π BERT PAPER APPROACH: Only first subtokens carry labels for training/evaluation")
return windowed_data
def __len__(self):
return len(self.processed_data)
def __getitem__(self, idx):
window_data = self.processed_data[idx]
subword_tokens = window_data['subword_tokens']
subword_labels = window_data['subword_labels']
# Convert subword tokens to padded tensors (no tokenization needed!)
input_ids = subword_tokens[:self.max_length] # Guaranteed to fit
# Pad to max_length if needed
pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
while len(input_ids) < self.max_length:
input_ids.append(pad_token_id)
# Create attention mask (1 for real tokens, 0 for padding)
attention_mask = [1 if token != pad_token_id else 0 for token in input_ids]
# Pad labels to match
labels = subword_labels[:self.max_length]
while len(labels) < self.max_length:
labels.append(-100) # Ignore padding tokens in loss
return {
'input_ids': torch.tensor(input_ids, dtype=torch.long),
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
'labels': torch.tensor(labels, dtype=torch.long),
'original_tokens': window_data['original_words'], # Original words for reference
'original_labels': window_data['original_labels'], # Original word labels
# Add window metadata for evaluation aggregation
'sample_id': window_data['sample_id'],
'window_id': window_data['window_id'],
'total_windows': window_data['total_windows'],
'window_start': window_data['window_start'],
'window_end': window_data['window_end']
}
class TransformerInstructionClassifier(nn.Module):
def __init__(self, model_name: str = 'xlm-roberta-base', num_labels: int = 2,
class_weights=None, loss_type='weighted_ce', dropout: float = 0.1):
super().__init__()
self.num_labels = num_labels
self.loss_type = loss_type
# Load pre-trained transformer model (XLM-RoBERTa, ModernBERT, etc.)
self.bert = AutoModel.from_pretrained(model_name)
self.dropout = nn.Dropout(dropout)
# Classification head
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
# Setup loss function based on type
if loss_type == 'weighted_ce':
self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100, weight=class_weights)
elif loss_type == 'focal':
self.loss_fct = FocalLoss(alpha=1, gamma=2, ignore_index=-100)
else:
self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
def forward(self, input_ids, attention_mask, labels=None):
# Get BERT outputs
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)
# Get last hidden state
last_hidden_state = outputs.last_hidden_state
# Apply dropout
last_hidden_state = self.dropout(last_hidden_state)
# Classification
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
logger = logging.getLogger(__name__)
# Check for NaN in inputs before loss calculation
if torch.isnan(logits).any():
logger.warning("NaN detected in logits!")
if torch.isnan(labels.float()).any():
logger.warning("NaN detected in labels!")
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
# Check if loss is NaN
if torch.isnan(loss):
logger.warning("NaN loss detected!")
logger.warning(f"Logits stats: min={logits.min()}, max={logits.max()}, mean={logits.mean()}")
logger.warning(f"Labels unique values: {torch.unique(labels[labels != -100])}")
return {
'loss': loss,
'logits': logits
}
def collate_fn(batch):
"""Custom collate function for DataLoader"""
input_ids = torch.stack([item['input_ids'] for item in batch])
attention_mask = torch.stack([item['attention_mask'] for item in batch])
labels = torch.stack([item['labels'] for item in batch])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'original_tokens': [item['original_tokens'] for item in batch],
'original_labels': [item['original_labels'] for item in batch],
# Add window metadata
'sample_ids': [item['sample_id'] for item in batch],
'window_ids': [item['window_id'] for item in batch],
'total_windows': [item['total_windows'] for item in batch],
'window_starts': [item['window_start'] for item in batch],
'window_ends': [item['window_end'] for item in batch]
}
def predict_instructions(model, tokenizer, text: str, device=None):
"""Predict instructions in a given text"""
# Auto-detect device if not provided
if device is None:
if torch.backends.mps.is_available():
device = torch.device('mps')
elif torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
model.eval()
# Keep original casing since XLM-RoBERTa is case-sensitive
# text = text.lower() # Removed for cased model
tokens = text.split()
# Tokenize
encoded = tokenizer(
tokens,
is_split_into_words=True,
padding='max_length',
truncation=True,
max_length=512,
return_tensors='pt'
)
input_ids = encoded['input_ids'].to(device)
attention_mask = encoded['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.argmax(outputs['logits'], dim=-1)
# Align predictions with original tokens
word_ids = encoded.word_ids()
word_predictions = []
prev_word_id = None
for i, word_id in enumerate(word_ids):
if word_id is not None and word_id != prev_word_id:
if word_id < len(tokens):
word_predictions.append(predictions[0][i].item())
prev_word_id = word_id
return tokens, word_predictions
def get_device():
"""Get the best available device"""
if torch.backends.mps.is_available():
return torch.device('mps')
elif torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu') |