sachin commited on
Commit
678506e
·
1 Parent(s): 0699851
Files changed (2) hide show
  1. Dockerfile +6 -0
  2. download_models.py +7 -2
Dockerfile CHANGED
@@ -33,6 +33,12 @@ RUN pip install --no-cache-dir -r requirements.txt
33
  # Create a directory for pre-downloaded models
34
  RUN mkdir -p /app/models
35
 
 
 
 
 
 
 
36
  # Copy and run the model download script
37
  COPY download_models.py .
38
  RUN python download_models.py
 
33
  # Create a directory for pre-downloaded models
34
  RUN mkdir -p /app/models
35
 
36
+ # Define build argument for HF_TOKEN
37
+ ARG HF_TOKEN
38
+
39
+ # Set environment variable for the build process
40
+ ENV HF_TOKEN=$HF_TOKEN
41
+
42
  # Copy and run the model download script
43
  COPY download_models.py .
44
  RUN python download_models.py
download_models.py CHANGED
@@ -3,6 +3,11 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, Au
3
  from transformers import Gemma3ForConditionalGeneration
4
  import os
5
 
 
 
 
 
 
6
  # Define the models to download
7
  models = {
8
  'llm_model': ('google/gemma-3-4b-it', Gemma3ForConditionalGeneration, AutoProcessor),
@@ -22,9 +27,9 @@ os.makedirs(save_dir, exist_ok=True)
22
  # Download and save each model
23
  for name, (model_name, model_class, processor_class) in models.items():
24
  print(f'Downloading {model_name}...')
25
- model = model_class.from_pretrained(model_name, trust_remote_code=True)
26
  model.save_pretrained(f'{save_dir}/{name}')
27
  if processor_class:
28
- processor = processor_class.from_pretrained(model_name, trust_remote_code=True)
29
  processor.save_pretrained(f'{save_dir}/{name}')
30
  print(f'Saved {model_name} to {save_dir}/{name}')
 
3
  from transformers import Gemma3ForConditionalGeneration
4
  import os
5
 
6
+ # Get the Hugging Face token from environment variable
7
+ hf_token = os.getenv("HF_TOKEN")
8
+ if not hf_token:
9
+ print("Warning: HF_TOKEN not set. Some models may require authentication.")
10
+
11
  # Define the models to download
12
  models = {
13
  'llm_model': ('google/gemma-3-4b-it', Gemma3ForConditionalGeneration, AutoProcessor),
 
27
  # Download and save each model
28
  for name, (model_name, model_class, processor_class) in models.items():
29
  print(f'Downloading {model_name}...')
30
+ model = model_class.from_pretrained(model_name, trust_remote_code=True, token=hf_token)
31
  model.save_pretrained(f'{save_dir}/{name}')
32
  if processor_class:
33
+ processor = processor_class.from_pretrained(model_name, trust_remote_code=True, token=hf_token)
34
  processor.save_pretrained(f'{save_dir}/{name}')
35
  print(f'Saved {model_name} to {save_dir}/{name}')