sachin
commited on
Commit
·
0699851
1
Parent(s):
57245bd
test
Browse files- Dockerfile +3 -2
- download_models.py +30 -0
Dockerfile
CHANGED
@@ -33,8 +33,9 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
33 |
# Create a directory for pre-downloaded models
|
34 |
RUN mkdir -p /app/models
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
38 |
|
39 |
# Copy application code
|
40 |
COPY . .
|
|
|
33 |
# Create a directory for pre-downloaded models
|
34 |
RUN mkdir -p /app/models
|
35 |
|
36 |
+
# Copy and run the model download script
|
37 |
+
COPY download_models.py .
|
38 |
+
RUN python download_models.py
|
39 |
|
40 |
# Copy application code
|
41 |
COPY . .
|
download_models.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModel
|
3 |
+
from transformers import Gemma3ForConditionalGeneration
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Define the models to download
|
7 |
+
models = {
|
8 |
+
'llm_model': ('google/gemma-3-4b-it', Gemma3ForConditionalGeneration, AutoProcessor),
|
9 |
+
'tts_model': ('ai4bharat/IndicF5', AutoModel, None),
|
10 |
+
'asr_model': ('ai4bharat/indic-conformer-600m-multilingual', AutoModel, None),
|
11 |
+
'trans_en_indic': ('ai4bharat/indictrans2-en-indic-dist-200M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
12 |
+
'trans_indic_en': ('ai4bharat/indictrans2-indic-en-dist-200M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
13 |
+
'trans_indic_indic': ('ai4bharat/indictrans2-indic-indic-dist-320M', AutoModelForSeq2SeqLM, AutoTokenizer),
|
14 |
+
}
|
15 |
+
|
16 |
+
# Directory to save models
|
17 |
+
save_dir = '/app/models'
|
18 |
+
|
19 |
+
# Ensure the directory exists
|
20 |
+
os.makedirs(save_dir, exist_ok=True)
|
21 |
+
|
22 |
+
# Download and save each model
|
23 |
+
for name, (model_name, model_class, processor_class) in models.items():
|
24 |
+
print(f'Downloading {model_name}...')
|
25 |
+
model = model_class.from_pretrained(model_name, trust_remote_code=True)
|
26 |
+
model.save_pretrained(f'{save_dir}/{name}')
|
27 |
+
if processor_class:
|
28 |
+
processor = processor_class.from_pretrained(model_name, trust_remote_code=True)
|
29 |
+
processor.save_pretrained(f'{save_dir}/{name}')
|
30 |
+
print(f'Saved {model_name} to {save_dir}/{name}')
|