testingnewcode / app.py
sksameermujahid's picture
Update app.py
15a0540 verified
import os
import faiss
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS
from pyngrok import ngrok
import requests
import cloudinary
import cloudinary.uploader
import cloudinary.api
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from peft import PeftModel, PeftConfig
import speech_recognition as sr
from pydub import AudioSegment
from happytransformer import HappyTextToText, TTSettings
import io
import logging
import geocoder
from geopy.distance import geodesic
import webrtcvad
import collections
import time
from werkzeug.utils import secure_filename
from geopy.geocoders import Nominatim
import pickle
import numpy as np
import tempfile
from pathlib import Path
# Update the numpy version check
if not hasattr(np, '__version__') or tuple(map(int, np.__version__.split('.'))) != (1, 23, 5):
print(f"Warning: Using numpy version {np.__version__}. Expected version 1.23.5")
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
API_KEY = os.getenv("AIzaSyC5FSchUVhKWetUIYPMe92B_1oRqhGplqI")
CSE_ID = os.getenv("c03c5384c2c5d424b")
CLOUDINARY_CLOUD_NAME = os.getenv("dn4rackei")
CLOUDINARY_API_KEY = os.getenv("599266248716888")
CLOUDINARY_API_SECRET = os.getenv("DRAaasqskCvfAhJhcKB6AKxrD7U")
# Define paths
load_dir = "./models/new_rag_model/"
model_path = os.path.join(load_dir, "model_state_dict.pth")
faiss_index_path = os.path.join(load_dir, "property_faiss.index")
dataset_path = os.path.join(load_dir, "property_data.csv")
model_dir = "./models/llm_model"
# model_dir = "/content/drive/MyDrive/newllmmodel/final_model"
# model_dir = "/content/drive/MyDrive/real_estate_model/final_model"
# model_dir = "/content/drive/MyDrive/rag"
# Check device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Configure cache directories
os.environ['TRANSFORMERS_CACHE'] = '/cache'
os.environ['HF_HOME'] = '/cache'
os.environ['XDG_CACHE_HOME'] = '/cache'
# Load SentenceTransformer model
def load_sentence_transformer():
print("Loading SentenceTransformer model...")
try:
# Create cache directory if it doesn't exist
cache_dir = Path('/cache')
cache_dir.mkdir(parents=True, exist_ok=True)
# Import einops here to ensure it's available
try:
import einops
except ImportError:
raise ImportError("einops is required. Please install it with 'pip install einops'")
model_embedding = SentenceTransformer(
"jinaai/jina-embeddings-v3",
trust_remote_code=True,
cache_folder=str(cache_dir)
).to(device)
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=device)
# Handle tensor types
for key, tensor in state_dict.items():
if hasattr(tensor, 'dequantize'):
state_dict[key] = tensor.dequantize().to(dtype=torch.float32)
elif tensor.dtype == torch.bfloat16:
state_dict[key] = tensor.to(dtype=torch.float32)
model_embedding.load_state_dict(state_dict)
print("SentenceTransformer model loaded successfully.")
else:
print(f"Warning: Model file not found at {model_path}")
return model_embedding
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
# Load FAISS index
def load_faiss_index():
print("Loading FAISS index...")
try:
index = faiss.read_index(faiss_index_path)
# Ensure the index is on CPU
if hasattr(faiss, 'StandardGpuResources'):
index = faiss.index_gpu_to_cpu(index)
print("FAISS index loaded successfully.")
return index
except Exception as e:
print(f"Error loading FAISS index: {str(e)}")
raise
# Load dataset
def load_dataset():
print("Loading dataset...")
df = pd.read_csv(dataset_path)
print("Dataset loaded successfully.")
return df
# Custom Retriever Class
class CustomRagRetriever:
def __init__(self, faiss_index, model):
self.index = faiss_index
self.model = model
self.pca = None
# Load PCA if it exists
pca_path = os.path.join(os.path.dirname(model_path), "pca_model.pkl")
if os.path.exists(pca_path):
try:
with open(pca_path, 'rb') as f:
self.pca = pickle.load(f)
except ModuleNotFoundError:
print("Warning: Could not load PCA model due to numpy version mismatch. Continuing without PCA.")
self.pca = None
except Exception as e:
print(f"Warning: Error loading PCA model: {str(e)}. Continuing without PCA.")
self.pca = None
def retrieve(self, query, top_k=10):
print(f"Retrieving properties for query: {query}")
try:
# Get query embedding with optimizations
with torch.no_grad():
query_embedding = self.model.encode(
[query],
convert_to_numpy=True,
device=device,
normalize_embeddings=True
)
# Convert to FP32
query_embedding = query_embedding.astype(np.float32)
# Only apply PCA if it was successfully loaded
if self.pca is not None:
try:
query_embedding = self.pca.transform(query_embedding)
except Exception as e:
print(f"Warning: Error applying PCA transformation: {str(e)}")
distances, indices = self.index.search(query_embedding, top_k)
retrieved_properties = []
for idx, dist in zip(indices[0], distances[0]):
property_data = df.iloc[idx]
retrieved_properties.append({
"property": property_data,
"image_url": property_data["property_image"],
"distance": float(dist)
})
print(f"Retrieved {len(retrieved_properties)} properties")
return retrieved_properties
except Exception as e:
print(f"Error in retrieve: {str(e)}")
raise
# Initialize components
df = load_dataset()
model_embedding = load_sentence_transformer()
index = load_faiss_index()
retriever = CustomRagRetriever(index, model_embedding)
# Load tokenizer and LLM model
def load_tokenizer_and_model():
print("Loading tokenizer...")
try:
# Load base model first
base_model_name = "unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
print("Tokenizer loaded successfully.")
print("Loading LLM model...")
# Load the base model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
trust_remote_code=True,
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
device_map="auto"
)
# Load the PEFT adapter
model_llm = PeftModel.from_pretrained(
base_model,
model_dir,
device_map="auto",
is_trainable=False
)
print("LLM model loaded successfully.")
return tokenizer, model_llm
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
tokenizer, model_llm = load_tokenizer_and_model()
# Configure Cloudinary
def configure_cloudinary():
print("Configuring Cloudinary...")
cloudinary.config(
cloud_name=CLOUDINARY_CLOUD_NAME,
api_key=CLOUDINARY_API_KEY,
api_secret=CLOUDINARY_API_SECRET
)
print("Cloudinary configured successfully.")
configure_cloudinary()
# Search real estate properties
def search_real_estate(query, retriever, top_k=10, raw_results=False):
print(f"Searching real estate properties for query: {query}")
search_results = retriever.retrieve(query, top_k)
if raw_results:
return search_results
formatted_results = []
for result in search_results:
property_info = result['property']
formatted_result = {
"Property Name": property_info.get('PropertyName', 'N/A'),
"Address": property_info.get('Address', 'N/A'),
"ZipCode": int(float(property_info.get('ZipCode', 0))),
"LeasableSquareFeet": int(float(property_info.get('LeasableSquareFeet', 0))),
"YearBuilt": int(float(property_info.get('YearBuilt', 0))),
"NumberOfRooms": int(float(property_info.get('NumberOfRooms', 0))),
"ParkingSpaces": int(float(property_info.get('ParkingSpaces', 0))),
"PropertyManager": property_info.get('PropertyManager', 'N/A'),
"MarketValue": float(property_info.get('MarketValue', 0)),
"TaxAssessmentNumber": property_info.get('TaxAssessmentNumber', 'N/A'),
"Latitude": float(property_info.get('Latitude', 0)),
"Longitude": float(property_info.get('Longitude', 0)),
"CreateDate": property_info.get('CreateDate', 'N/A'),
"LastModifiedDate": property_info.get('LastModifiedDate', 'N/A'),
"City": property_info.get('City', 'N/A'),
"State": property_info.get('State', 'N/A'),
"Country": property_info.get('Country', 'N/A'),
"PropertyType": property_info.get('PropertyType', 'N/A'),
"PropertyStatus": property_info.get('PropertyStatus', 'N/A'),
"Description": property_info.get('Description', 'N/A'),
"ViewNumber": int(float(property_info.get('ViewNumber', 0))),
"Contact": int(float(property_info.get('Contact', 0))),
"TotalSquareFeet": int(float(property_info.get('TotalSquareFeet', 0))),
"IsDeleted": bool(property_info.get('IsDeleted', False)),
"Beds": int(float(property_info.get('Beds', 0))),
"Baths": int(float(property_info.get('Baths', 0))),
"AgentName": property_info.get('AgentName', 'N/A'),
"AgentPhoneNumber": property_info.get('AgentPhoneNumber', 'N/A'),
"AgentEmail": property_info.get('AgentEmail', 'N/A'),
"KeyFeatures": property_info.get('KeyFeatures', 'N/A'),
"NearbyAmenities": property_info.get('NearbyAmenities', 'N/A'),
"Property Image": result['image_url'],
"Distance": result['distance']
}
formatted_results.append(formatted_result)
print(f"Found {len(formatted_results)} matching properties")
return formatted_results
# Generate response with optimized parameters
def generate_response(query, max_new_tokens=100, temperature=0.7, top_k=30, top_p=0.8, repetition_penalty=1.05):
print(f"\nGenerating response for query: {query}\n")
# Print parameter settings
print("Generation Parameters:")
print(f"- Max New Tokens: {max_new_tokens}")
print(f"- Temperature: {temperature}")
print(f"- Top-K Sampling: {top_k}")
print(f"- Top-P Sampling: {top_p}")
print(f"- Repetition Penalty: {repetition_penalty}")
print(f"- Sampling Enabled: True (do_sample=True)\n")
input_text = f"User: {query}\nAssistant:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
start_time = time.time() # Record start time
try:
outputs = model_llm.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.replace(input_text, "").strip()
end_time = time.time() # Record end time
duration = end_time - start_time # Calculate duration
print(f"\nGenerated Response:\n{response}\n")
print(f"Time taken to generate response: {duration:.2f} seconds\n")
return response, duration
except Exception as e:
logging.error(f"Error generating response: {e}")
return "An error occurred while generating the response.", None
# Combined model response with optimized parameters
def combined_model_response(query, retriever, top_k=5, max_new_tokens=512, temperature=0.5, top_k_sampling=30, repetition_penalty=1.0):
print(f"Generating combined model response for query: {query}")
retrieved_results = search_real_estate(query, retriever, top_k, raw_results=True)
if not retrieved_results:
return "No relevant properties found."
combined_property_details = []
for i, result in enumerate(retrieved_results, 1):
property_info = result['property']
property_details = (
f"Property {i}:\n"
f"Property Name: {property_info['PropertyName']}\n"
f"Address: {property_info['Address']}, {property_info['City']}, {property_info['State']}, {property_info['ZipCode']}, {property_info['Country']}\n"
f"Leasable Area: {property_info['LeasableSquareFeet']} sqft\n"
f"Year Built: {property_info['YearBuilt']}\n"
f"Beds: {property_info['Beds']} Baths: {property_info['Baths']}\n"
f"Parking Spaces: {property_info['ParkingSpaces']}\n"
f"Market Value: {property_info['MarketValue']}\n"
# f"Tax Assessment Number: {property_info['TaxAssessmentNumber']}\n"
# f"Coordinates: {property_info['Latitude']}, {property_info['Longitude']}\n"
f"Property Type: {property_info['PropertyType']}\n"
f"Property Status: {property_info['PropertyStatus']}\n"
f"Description: {property_info['Description']}\n"
# f"View Count: {property_info['ViewNumber']}\n"
f"Contact: {property_info['Contact']}\n"
f"Total Square Feet: {property_info['TotalSquareFeet']} sqft\n"
# f"Deleted: {'Yes' if property_info['IsDeleted'] else 'No'}\n"
f"Agent Name: {property_info['AgentName']}\n"
f"Agent Phone Number: {property_info['AgentPhoneNumber']}\n"
f"Agent Email: {property_info['AgentEmail']}\n"
f"Key Features: {property_info['KeyFeatures']}\n"
f"Nearby Amenities: {property_info['NearbyAmenities']}\n"
f"Created Date: {property_info['CreateDate']}\n"
f"Last Modified Date: {property_info['LastModifiedDate']}\n"
)
combined_property_details.append(property_details)
prompt = f"User Query: {query}\nProperty Details:\n" + "\n".join(combined_property_details) + "\nGenerate a concise response based on the user's query and retrieved property details."
print(f"User Query: {query}")
response, duration = generate_response(prompt, max_new_tokens=max_new_tokens)
print(f"Combined model response: {response}")
print(f"Time taken to generate combined model response: {duration:.2f} seconds\n")
return response, duration
# VAD Audio Class
class VADAudio:
def __init__(self, aggressiveness=3):
self.vad = webrtcvad.Vad(aggressiveness)
self.sample_rate = 16000
self.frame_duration_ms = 30
def frame_generator(self, audio, frame_duration_ms, sample_rate):
n = int(sample_rate * (frame_duration_ms / 1000.0))
offset = 0
while offset + n < len(audio):
yield audio[offset:offset + n]
offset += n
def vad_collector(self, audio, sample_rate, frame_duration_ms, padding_duration_ms=300, aggressiveness=3):
vad = webrtcvad.Vad(aggressiveness)
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in self.frame_generator(audio, frame_duration_ms, sample_rate):
is_speech = vad.is_speech(frame, sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > 0.9 * ring_buffer.maxlen:
triggered = False
yield b''.join([f for f in ring_buffer])
ring_buffer.clear()
# Transcribe with VAD
def transcribe_with_vad(audio_file):
vad_audio = VADAudio()
audio = AudioSegment.from_file(audio_file)
audio = audio.set_frame_rate(vad_audio.sample_rate).set_channels(1)
raw_audio = audio.raw_data
frames = vad_audio.vad_collector(raw_audio, vad_audio.sample_rate, vad_audio.frame_duration_ms)
for frame in frames:
if len(frame) > 0:
recognizer = sr.Recognizer()
audio_data = sr.AudioData(frame, vad_audio.sample_rate, audio.sample_width)
try:
text = recognizer.recognize_google(audio_data)
print(f"Transcription: {text}")
return text
except sr.UnknownValueError:
print("Google Speech Recognition could not understand the audio")
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service; {e}")
return ""
# Flask app
app = Flask(__name__, template_folder="sample_data/templates")
conversation_context = {}
# Configure CORS
CORS(app, resources={
r"/*": {
"origins": ["http://localhost:4200", "https://localhost:4200"],
"methods": ["GET", "POST", "OPTIONS"],
"allow_headers": ["Content-Type", "X-Session-ID"]
}
})
@app.before_request
def handle_preflight():
if request.method == 'OPTIONS':
response = app.make_default_options_response()
response.headers.add('Access-Control-Allow-Headers', 'Content-Type, X-Session-ID')
response.headers.add('Access-Control-Allow-Methods', 'GET, POST, OPTIONS')
return response
@app.route('/')
def index():
print("Rendering index page")
return render_template('index.html')
@app.route('/search', methods=['POST'])
def search():
try:
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if session_id not in conversation_context or not continue_conversation:
search_results = retriever.retrieve(query)
formatted_results = []
for result in search_results:
property_info = result['property']
formatted_result = {
"Property Name": property_info.get('PropertyName', 'N/A'),
"Address": property_info.get('Address', 'N/A'),
"ZipCode": int(float(property_info.get('ZipCode', 0))),
"LeasableSquareFeet": int(float(property_info.get('LeasableSquareFeet', 0))),
"YearBuilt": int(float(property_info.get('YearBuilt', 0))),
"NumberOfRooms": int(float(property_info.get('NumberOfRooms', 0))),
"ParkingSpaces": int(float(property_info.get('ParkingSpaces', 0))),
"PropertyManager": property_info.get('PropertyManager', 'N/A'),
"MarketValue": float(property_info.get('MarketValue', 0)),
"TaxAssessmentNumber": property_info.get('TaxAssessmentNumber', 'N/A'),
"City": property_info.get('City', 'N/A'),
"State": property_info.get('State', 'N/A'),
"Country": property_info.get('Country', 'N/A'),
"PropertyType": property_info.get('PropertyType', 'N/A'),
"PropertyStatus": property_info.get('PropertyStatus', 'N/A'),
"Description": property_info.get('Description', 'N/A'),
"ViewNumber": int(float(property_info.get('ViewNumber', 0))),
"Contact": int(float(property_info.get('Contact', 0))),
"TotalSquareFeet": int(float(property_info.get('TotalSquareFeet', 0))),
"IsDeleted": bool(property_info.get('IsDeleted', False)),
"Beds": int(float(property_info.get('Beds', 0))),
"Baths": int(float(property_info.get('Baths', 0))),
"AgentName": property_info.get('AgentName', 'N/A'),
"AgentPhoneNumber": property_info.get('AgentPhoneNumber', 'N/A'),
"AgentEmail": property_info.get('AgentEmail', 'N/A'),
"KeyFeatures": property_info.get('KeyFeatures', 'N/A'),
"NearbyAmenities": property_info.get('NearbyAmenities', 'N/A'),
"Property Image": result['image_url'],
"Distance": float(result['distance'])
}
formatted_results.append(formatted_result)
conversation_context[session_id] = formatted_results
else:
formatted_results = conversation_context[session_id]
print(f"Returning {len(formatted_results)} search results")
return jsonify(formatted_results)
except Exception as e:
logging.error(f"Error in search endpoint: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
@app.route('/transcribe', methods=['POST'])
def transcribe():
if 'audio' not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files['audio']
# Ensure the file has an allowed extension
allowed_extensions = {'wav', 'mp3', 'ogg', 'webm'}
if '.' not in audio_file.filename or \
audio_file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
return jsonify({"error": "Invalid audio file format"}), 400
try:
# Save the uploaded file temporarily
temp_dir = os.path.join(os.getcwd(), 'temp')
os.makedirs(temp_dir, exist_ok=True)
temp_path = os.path.join(temp_dir, 'temp_audio.' + audio_file.filename.rsplit('.', 1)[1].lower())
audio_file.save(temp_path)
# Convert audio to proper format if needed
audio = AudioSegment.from_file(temp_path)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(16000) # Set sample rate to 16kHz
# Save as WAV for speech recognition
wav_path = os.path.join(temp_dir, 'temp_audio.wav')
audio.export(wav_path, format="wav")
# Perform speech recognition
recognizer = sr.Recognizer()
with sr.AudioFile(wav_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
# Clean up temporary files
os.remove(temp_path)
os.remove(wav_path)
# Grammar correction
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
settings = TTSettings(do_sample=True, top_k=50, temperature=0.7)
corrected_text = happy_tt.generate_text(f"grammar: {text}", args=settings)
print(f"Original Transcription: {text}")
print(f"Corrected Transcription: {corrected_text.text}")
return jsonify({
"transcription": corrected_text.text,
"original": text
})
except sr.UnknownValueError:
return jsonify({"error": "Could not understand audio"}), 400
except sr.RequestError as e:
return jsonify({"error": f"Google Speech Recognition error: {str(e)}"}), 500
except Exception as e:
logging.error(f"Error processing audio: {str(e)}")
return jsonify({"error": f"Audio processing error: {str(e)}"}), 500
finally:
# Ensure temp files are cleaned up even if an error occurs
if 'temp_path' in locals() and os.path.exists(temp_path):
os.remove(temp_path)
if 'wav_path' in locals() and os.path.exists(wav_path):
os.remove(wav_path)
@app.route('/generate', methods=['POST'])
def generate():
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if session_id in conversation_context and continue_conversation:
previous_results = conversation_context[session_id]
combined_query = f"Based on previous results:{previous_results}New Query: {query}"
response, duration = generate_response(combined_query)
else:
response, duration = generate_response(query)
conversation_context[session_id] = response
print(f"Generated response: {response}")
print(f"Time taken to generate response: {duration:.2f} seconds\n")
return jsonify({"response": response, "duration": duration})
@app.route('/recommend', methods=['POST'])
def recommend():
data = request.json
query = data.get('query')
session_id = data.get('session_id')
continue_conversation = data.get('continue', False)
if not query:
return jsonify({"error": "Query parameter is missing"}), 400
if query.lower() == 'hi':
return jsonify({"response": "Do you want to know the properties located near you? (yes/no):"})
if query.lower() == 'yes':
if session_id in conversation_context and 'location' in conversation_context[session_id]:
latitude, longitude = conversation_context[session_id]['location']
else:
return jsonify({"error": "Location not available. Please try again."}), 400
my_location = (latitude, longitude)
# Filter out rows with invalid coordinates before calculating distances
valid_properties = df[
df['Latitude'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.replace('.', '').isdigit())) &
df['Longitude'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.replace('.', '').isdigit()))
].copy()
# Convert coordinates to float
valid_properties['Latitude'] = valid_properties['Latitude'].astype(float)
valid_properties['Longitude'] = valid_properties['Longitude'].astype(float)
# Calculate distances for valid properties
valid_properties['Distance'] = valid_properties.apply(
lambda row: geodesic(my_location, (row['Latitude'], row['Longitude'])).miles,
axis=1
)
# Get 5 nearest properties
nearest_properties = valid_properties.nsmallest(5, 'Distance')
nearest_properties_list = nearest_properties[[
'PropertyName', 'Address', 'City', 'Distance',
'PropertyType', 'AgentPhoneNumber'
]].to_dict(orient='records')
if not nearest_properties_list:
return jsonify({"response": "No valid properties found near your location."})
return jsonify({
"response": "Here are the 5 nearest properties to your location:",
"properties": nearest_properties_list
})
if session_id in conversation_context and continue_conversation:
previous_results = conversation_context[session_id]
combined_query = f"Based on previous results:{previous_results}New Query: {query}"
response, duration = combined_model_response(combined_query, retriever)
else:
response, duration = combined_model_response(query, retriever)
conversation_context[session_id] = response
print(f"Recommended response: {response}")
print(f"Time taken to generate recommended response: {duration:.2f} seconds\n")
return jsonify({"response": response, "duration": duration})
@app.route('/set-location', methods=['POST'])
def set_location():
data = request.json
latitude = data.get('latitude')
longitude = data.get('longitude')
session_id = data.get('session_id')
if latitude is None or longitude is None:
return jsonify({"error": "Location parameters are missing"}), 400
try:
# Initialize the geolocator
geolocator = Nominatim(user_agent="hive_prop")
# Get location details from coordinates
location = geolocator.reverse(f"{latitude}, {longitude}", language='en')
if location and location.raw.get('address'):
address = location.raw['address']
city = address.get('city') or address.get('town') or address.get('suburb') or address.get('county')
state = address.get('state')
country = address.get('country')
# Store location data in conversation context
conversation_context[session_id] = {
'location': (latitude, longitude),
'city': city,
'state': state,
'country': country
}
return jsonify({
"message": "Location set successfully.",
"city": city,
"state": state,
"country": country
})
else:
return jsonify({"error": "Could not determine city from coordinates"}), 400
except Exception as e:
logging.error(f"Error getting location details: {str(e)}")
return jsonify({"error": f"Error processing location: {str(e)}"}), 500
if __name__ == '__main__':
# Remove ngrok configuration
# public_url = ngrok.connect(5000)
# print(f' * ngrok tunnel "http://127.0.0.1:5000" -> "{public_url}"')
# Update to use port 7860 (standard for Spaces)
app.run(host='0.0.0.0', port=7860)