merve HF Staff commited on
Commit
377fcde
Β·
1 Parent(s): 669cedb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -60,27 +60,27 @@ description3 = "We will use the toy dataset as given in the scikit-learn page fo
60
 
61
  with gr.Blocks(title=title) as demo:
62
 
63
- gr.Markdown(f"# {title}")
64
  gr.Markdown(
65
  """
66
- The isolation forest is an Ensemble of Isolation trees and it isolates the data points using recursive random partitioning.
67
  In case of outliers the number of splits required is greater than those required for inliers.
68
  We will use the toy dataset for our educational demo as given in the scikit-learn page for Isolation Forest.
69
 
70
  """)
71
 
72
- gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
73
 
74
  loaded_model = load_hf_model_hub()
75
 
76
- with gr.Tab("# Visualize Input dataset"):
77
  btn = gr.Button(value="Visualize input dataset")
78
  btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
79
 
80
- with gr.Tab("# Plot Decision Boundary"):
81
  image_decision = gr.Image('./downloaded-model/decision_boundary.png')
82
 
83
- with gr.Tab("# Plot Path"):
84
  image_path = gr.Image('./downloaded-model/plot_path.png')
85
 
86
 
 
60
 
61
  with gr.Blocks(title=title) as demo:
62
 
63
+ gr.Markdown(f" # {title}")
64
  gr.Markdown(
65
  """
66
+ The isolation forest is an ensemble of isolation trees and it isolates the data points using recursive random partitioning.
67
  In case of outliers the number of splits required is greater than those required for inliers.
68
  We will use the toy dataset for our educational demo as given in the scikit-learn page for Isolation Forest.
69
 
70
  """)
71
 
72
+ gr.Markdown("You can see the associated scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py).")
73
 
74
  loaded_model = load_hf_model_hub()
75
 
76
+ with gr.Tab("Visualize Input dataset"):
77
  btn = gr.Button(value="Visualize input dataset")
78
  btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
79
 
80
+ with gr.Tab("Plot Decision Boundary"):
81
  image_decision = gr.Image('./downloaded-model/decision_boundary.png')
82
 
83
+ with gr.Tab("Plot Path"):
84
  image_path = gr.Image('./downloaded-model/plot_path.png')
85
 
86