Jayabalambika commited on
Commit
669cedb
Β·
1 Parent(s): 6c5daeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -47,15 +47,12 @@ def visualize_input_data():
47
  plt.axis("square")
48
  plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
49
  plt.title("Gaussian inliers with \nuniformly distributed outliers")
50
- # plt.show()
51
- # plt.clear()
52
  return fig
53
 
54
 
55
 
56
 
57
 
58
-
59
  title = " An example using IsolationForest for anomaly detection."
60
  description1 = "The isolation forest is an Ensemble of Isolation trees and it isolates the datapoints using recursive random partitioning."
61
  description2 = "In case of outliers the number of splits required is greater than those required for inliers."
@@ -64,22 +61,26 @@ description3 = "We will use the toy dataset as given in the scikit-learn page fo
64
  with gr.Blocks(title=title) as demo:
65
 
66
  gr.Markdown(f"# {title}")
67
- gr.Markdown(f"# {description1}")
68
- gr.Markdown(f"# {description2}")
69
- gr.Markdown(f"# {description3}")
 
 
 
 
70
 
71
  gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
72
 
73
  loaded_model = load_hf_model_hub()
74
 
75
- with gr.Tab("Visualize Input dataset"):
76
  btn = gr.Button(value="Visualize input dataset")
77
  btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
78
 
79
- with gr.Tab("Plot Decision Boundary"):
80
  image_decision = gr.Image('./downloaded-model/decision_boundary.png')
81
 
82
- with gr.Tab("Plot Path"):
83
  image_path = gr.Image('./downloaded-model/plot_path.png')
84
 
85
 
 
47
  plt.axis("square")
48
  plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
49
  plt.title("Gaussian inliers with \nuniformly distributed outliers")
 
 
50
  return fig
51
 
52
 
53
 
54
 
55
 
 
56
  title = " An example using IsolationForest for anomaly detection."
57
  description1 = "The isolation forest is an Ensemble of Isolation trees and it isolates the datapoints using recursive random partitioning."
58
  description2 = "In case of outliers the number of splits required is greater than those required for inliers."
 
61
  with gr.Blocks(title=title) as demo:
62
 
63
  gr.Markdown(f"# {title}")
64
+ gr.Markdown(
65
+ """
66
+ The isolation forest is an Ensemble of Isolation trees and it isolates the data points using recursive random partitioning.
67
+ In case of outliers the number of splits required is greater than those required for inliers.
68
+ We will use the toy dataset for our educational demo as given in the scikit-learn page for Isolation Forest.
69
+
70
+ """)
71
 
72
  gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
73
 
74
  loaded_model = load_hf_model_hub()
75
 
76
+ with gr.Tab("# Visualize Input dataset"):
77
  btn = gr.Button(value="Visualize input dataset")
78
  btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
79
 
80
+ with gr.Tab("# Plot Decision Boundary"):
81
  image_decision = gr.Image('./downloaded-model/decision_boundary.png')
82
 
83
+ with gr.Tab("# Plot Path"):
84
  image_path = gr.Image('./downloaded-model/plot_path.png')
85
 
86