eswardivi commited on
Commit
af0b767
Β·
1 Parent(s): 967ed47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -18,8 +18,8 @@ X, y = diabetes.data, diabetes.target
18
  def display_table(row_number):
19
  X, y = diabetes.data, diabetes.target
20
  XX = pd.concat([X, y], axis=1)
21
- temp_df = XX[row_number : row_number + 15]
22
- Statement = f"Displaying rows from row {row_number} to {row_number+15}"
23
  return Statement, temp_df
24
 
25
 
@@ -193,7 +193,7 @@ with gr.Blocks() as demo:
193
  "This demo is based on [gradient boosting regression example of scikit-learn](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html) Example.This example demonstrates gradient goosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to tackle a diabetes regression task."
194
  )
195
 
196
- with gr.Tab("Data"):
197
  gr.Markdown("### Below is the diabetes dataset used in this demo πŸ‘‡ ")
198
  gr.Markdown("### You can change the interval of rows to display.")
199
  gr.Markdown(
@@ -201,7 +201,7 @@ with gr.Blocks() as demo:
201
  )
202
  total_rows = X.shape[0]
203
  rows_number = gr.Slider(
204
- 0, total_rows, label="Displaying Rows", value=15, step=15
205
  )
206
 
207
  rows_number.change(
@@ -210,7 +210,6 @@ with gr.Blocks() as demo:
210
  outputs=[gr.Text(label="Row"), gr.DataFrame()],
211
  )
212
 
213
- with gr.Tab("Train the model"):
214
  gr.Markdown(
215
  "# Play with the parameters to see how the model performance changes"
216
  )
 
18
  def display_table(row_number):
19
  X, y = diabetes.data, diabetes.target
20
  XX = pd.concat([X, y], axis=1)
21
+ temp_df = XX[row_number : row_number + 5]
22
+ Statement = f"Displaying rows from row {row_number} to {row_number+5}"
23
  return Statement, temp_df
24
 
25
 
 
193
  "This demo is based on [gradient boosting regression example of scikit-learn](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html) Example.This example demonstrates gradient goosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to tackle a diabetes regression task."
194
  )
195
 
196
+ with gr.Tab("Train the model"):
197
  gr.Markdown("### Below is the diabetes dataset used in this demo πŸ‘‡ ")
198
  gr.Markdown("### You can change the interval of rows to display.")
199
  gr.Markdown(
 
201
  )
202
  total_rows = X.shape[0]
203
  rows_number = gr.Slider(
204
+ 0, total_rows, label="Displaying Rows", value=5, step=5
205
  )
206
 
207
  rows_number.change(
 
210
  outputs=[gr.Text(label="Row"), gr.DataFrame()],
211
  )
212
 
 
213
  gr.Markdown(
214
  "# Play with the parameters to see how the model performance changes"
215
  )