merve HF staff commited on
Commit
967ed47
·
1 Parent(s): fe340d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -19,7 +19,7 @@ def display_table(row_number):
19
  X, y = diabetes.data, diabetes.target
20
  XX = pd.concat([X, y], axis=1)
21
  temp_df = XX[row_number : row_number + 15]
22
- Statement = f"Displayed Rows From Row Number {row_number} to {row_number+15}"
23
  return Statement, temp_df
24
 
25
 
@@ -153,7 +153,7 @@ def Plot_featue_importance(test_split):
153
  except:
154
  # return blank figures
155
  fig = go.Figure()
156
- fig.update_layout(title="Train Your Model to See Plots")
157
  return fig, fig
158
 
159
  sorted_idx = np.argsort(feature_importance)
@@ -190,12 +190,12 @@ def Plot_featue_importance(test_split):
190
  with gr.Blocks() as demo:
191
  gr.Markdown("# Gradient Boosting regression")
192
  gr.Markdown(
193
- "Demo is Based on [Gradient Boosting regression](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html) Example.This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to tackle a diabetes regression task."
194
  )
195
 
196
  with gr.Tab("Data"):
197
- gr.Markdown("## Below is the Diabetes Dataset used in this Demo")
198
- gr.Markdown("### Feel free to change the number of rows to display")
199
  gr.Markdown(
200
  "The diabetes dataset consists of ten baseline variables, age, sex, body mass index (BMI), average blood pressure (BP), and six blood serum measurements for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline."
201
  )
@@ -207,12 +207,12 @@ with gr.Blocks() as demo:
207
  rows_number.change(
208
  fn=display_table,
209
  inputs=[rows_number],
210
- outputs=[gr.Text(label="Rows Information"), gr.DataFrame()],
211
  )
212
 
213
- with gr.Tab("Trian Your Model"):
214
  gr.Markdown(
215
- "# Play with the parameters to see how the model Performance changes"
216
  )
217
 
218
  gr.Markdown(
@@ -256,7 +256,7 @@ with gr.Blocks() as demo:
256
 
257
  model_btn = gr.Button("Train Model")
258
  gr.Markdown(
259
- "### Finally, we will visualize the results. To do that we will first compute the test set deviance and then plot it against boosting iterations."
260
  )
261
  model_btn.click(
262
  fn=train_model,
 
19
  X, y = diabetes.data, diabetes.target
20
  XX = pd.concat([X, y], axis=1)
21
  temp_df = XX[row_number : row_number + 15]
22
+ Statement = f"Displaying rows from row {row_number} to {row_number+15}"
23
  return Statement, temp_df
24
 
25
 
 
153
  except:
154
  # return blank figures
155
  fig = go.Figure()
156
+ fig.update_layout(title="Train a model to see the plots")
157
  return fig, fig
158
 
159
  sorted_idx = np.argsort(feature_importance)
 
190
  with gr.Blocks() as demo:
191
  gr.Markdown("# Gradient Boosting regression")
192
  gr.Markdown(
193
+ "This demo is based on [gradient boosting regression example of scikit-learn](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html) Example.This example demonstrates gradient goosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to tackle a diabetes regression task."
194
  )
195
 
196
  with gr.Tab("Data"):
197
+ gr.Markdown("### Below is the diabetes dataset used in this demo 👇 ")
198
+ gr.Markdown("### You can change the interval of rows to display.")
199
  gr.Markdown(
200
  "The diabetes dataset consists of ten baseline variables, age, sex, body mass index (BMI), average blood pressure (BP), and six blood serum measurements for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline."
201
  )
 
207
  rows_number.change(
208
  fn=display_table,
209
  inputs=[rows_number],
210
+ outputs=[gr.Text(label="Row"), gr.DataFrame()],
211
  )
212
 
213
+ with gr.Tab("Train the model"):
214
  gr.Markdown(
215
+ "# Play with the parameters to see how the model performance changes"
216
  )
217
 
218
  gr.Markdown(
 
256
 
257
  model_btn = gr.Button("Train Model")
258
  gr.Markdown(
259
+ "### Finally, we will visualize the results. To do that, we will first compute the test set deviance and then plot it against boosting iterations."
260
  )
261
  model_btn.click(
262
  fn=train_model,