Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| from datasets import load_dataset | |
| from sklearn.ensemble import GradientBoostingClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import accuracy_score, confusion_matrix | |
| matplotlib.use('Agg') | |
| ################################################################################ | |
| # SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets | |
| # | |
| # "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split | |
| # "uci/wine" -> Another small dataset with a "train" split | |
| # "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID | |
| ################################################################################ | |
| SUGGESTED_DATASETS = [ | |
| "scikit-learn/iris", | |
| "uci/wine", | |
| "SKIP/ENTER_CUSTOM" | |
| ] | |
| def update_columns(dataset_id, custom_dataset_id): | |
| """ | |
| After the user chooses a dataset from the dropdown or enters their own, | |
| this function loads the dataset's "train" split, converts it to a DataFrame, | |
| and returns the columns. These columns are used to populate the Label and | |
| Feature selectors in the UI. | |
| """ | |
| if dataset_id != "SKIP/ENTER_CUSTOM": | |
| final_id = dataset_id | |
| else: | |
| final_id = custom_dataset_id.strip() | |
| try: | |
| ds = load_dataset(final_id, split="train") | |
| df = pd.DataFrame(ds) | |
| cols = df.columns.tolist() | |
| message = ( | |
| f"**Loaded dataset**: `{final_id}`\n\n" | |
| f"**Columns found**: {cols}" | |
| ) | |
| return ( | |
| gr.update(choices=cols, value=None), # label_col dropdown | |
| gr.update(choices=cols, value=[]), # feature_cols checkbox group | |
| message | |
| ) | |
| except Exception as e: | |
| err_msg = f"**Error loading** `{final_id}`: {e}" | |
| return ( | |
| gr.update(choices=[], value=None), | |
| gr.update(choices=[], value=[]), | |
| err_msg | |
| ) | |
| def train_model(dataset_id, custom_dataset_id, label_column, feature_columns, | |
| learning_rate, n_estimators, max_depth, test_size): | |
| """ | |
| 1. Decide which dataset ID to load (from dropdown or custom). | |
| 2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label). | |
| 3. Train a GradientBoostingClassifier on X_train, y_train. | |
| 4. Compute accuracy and confusion matrix on X_test, y_test. | |
| 5. Plot and return feature importances + confusion matrix heatmap + textual summary. | |
| """ | |
| # Resolve final dataset ID | |
| if dataset_id != "SKIP/ENTER_CUSTOM": | |
| final_id = dataset_id | |
| else: | |
| final_id = custom_dataset_id.strip() | |
| # Load dataset -> df | |
| ds = load_dataset(final_id, split="train") | |
| df = pd.DataFrame(ds) | |
| # Validate columns | |
| if label_column not in df.columns: | |
| raise ValueError(f"Label column '{label_column}' not found in dataset columns.") | |
| for fc in feature_columns: | |
| if fc not in df.columns: | |
| raise ValueError(f"Feature column '{fc}' not found in dataset columns.") | |
| # Convert to NumPy arrays | |
| X = df[feature_columns].values | |
| y = df[label_column].values | |
| # Train/test split | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X, y, test_size=test_size, random_state=42 | |
| ) | |
| # Instantiate and train GradientBoostingClassifier | |
| clf = GradientBoostingClassifier( | |
| learning_rate=learning_rate, | |
| n_estimators=int(n_estimators), | |
| max_depth=int(max_depth), | |
| random_state=42 | |
| ) | |
| clf.fit(X_train, y_train) | |
| # Evaluate | |
| y_pred = clf.predict(X_test) | |
| accuracy = accuracy_score(y_test, y_pred) | |
| cm = confusion_matrix(y_test, y_pred) | |
| # Create Matplotlib figure with feature importances + confusion matrix | |
| fig, axs = plt.subplots(1, 2, figsize=(10, 4)) | |
| # Subplot 1: Feature Importances | |
| importances = clf.feature_importances_ | |
| axs[0].barh(range(len(feature_columns)), importances, color='skyblue') | |
| axs[0].set_yticks(range(len(feature_columns))) | |
| axs[0].set_yticklabels(feature_columns) | |
| axs[0].set_xlabel("Importance") | |
| axs[0].set_title("Feature Importances") | |
| # Subplot 2: Confusion Matrix Heatmap | |
| im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) | |
| axs[1].set_title("Confusion Matrix") | |
| plt.colorbar(im, ax=axs[1]) | |
| axs[1].set_xlabel("Predicted") | |
| axs[1].set_ylabel("True") | |
| # Optionally annotate each cell with numeric counts | |
| thresh = cm.max() / 2.0 | |
| for i in range(cm.shape[0]): | |
| for j in range(cm.shape[1]): | |
| color = "white" if cm[i, j] > thresh else "black" | |
| axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color) | |
| plt.tight_layout() | |
| # Textual summary | |
| text_summary = ( | |
| f"**Dataset used**: `{final_id}`\n\n" | |
| f"**Label column**: `{label_column}`\n\n" | |
| f"**Feature columns**: `{feature_columns}`\n\n" | |
| f"**Accuracy**: {accuracy:.3f}\n\n" | |
| ) | |
| return text_summary, fig | |
| ############################################################################### | |
| # Gradio UI | |
| ############################################################################### | |
| with gr.Blocks() as demo: | |
| # High-level title and description | |
| gr.Markdown( | |
| """ | |
| # Introduction to Gradient Boosting | |
| This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets). | |
| Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model. | |
| In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points. | |
| By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data. | |
| **Put simply, Gradient Boosting makes a big deal out of small anomolies!** | |
| **Purpose**: | |
| - Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data. | |
| - Visualise model performance via confusion matrix heatmap and a feature importance plot. | |
| **Notes**: | |
| - The dataset must have a **"train"** split with tabular columns (i.e., no nested structures). | |
| - Large datasets may take time to download/train. | |
| - The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications. | |
| - The feature importance plot shows which features the model relies on the most for its predictions. | |
| --- | |
| **Usage**: | |
| 1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets). | |
| 2. Click **Load Columns** to retrieve the column names from the dataset's **train** split. | |
| 3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs). | |
| 4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size). | |
| 5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix. | |
| You are now a machine learning engineer, congratulations π€ | |
| --- | |
| """ | |
| ) | |
| with gr.Row(): | |
| dataset_dropdown = gr.Dropdown( | |
| label="Choose suggested dataset", | |
| choices=SUGGESTED_DATASETS, | |
| value=SUGGESTED_DATASETS[0] | |
| ) | |
| custom_dataset_id = gr.Textbox( | |
| label="Or enter a custom dataset ID", | |
| placeholder="e.g. user/my_custom_dataset" | |
| ) | |
| load_cols_btn = gr.Button("Load Columns") | |
| load_cols_info = gr.Markdown() | |
| with gr.Row(): | |
| label_col = gr.Dropdown(choices=[], label="Label column (choose 1)") | |
| feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)") | |
| # Model Hyperparameters | |
| learning_rate_slider = gr.Slider( | |
| minimum=0.01, maximum=1.0, value=0.1, step=0.01, | |
| label="learning_rate" | |
| ) | |
| n_estimators_slider = gr.Slider( | |
| minimum=50, maximum=300, value=100, step=50, | |
| label="n_estimators" | |
| ) | |
| max_depth_slider = gr.Slider( | |
| minimum=1, maximum=10, value=3, step=1, | |
| label="max_depth" | |
| ) | |
| test_size_slider = gr.Slider( | |
| minimum=0.1, maximum=0.9, value=0.3, step=0.1, | |
| label="test_size fraction (0.1-0.9)" | |
| ) | |
| train_button = gr.Button("Train & Evaluate") | |
| output_text = gr.Markdown() | |
| output_plot = gr.Plot() | |
| # Link the "Load Columns" button -> update_columns function | |
| load_cols_btn.click( | |
| fn=update_columns, | |
| inputs=[dataset_dropdown, custom_dataset_id], | |
| outputs=[label_col, feature_cols, load_cols_info], | |
| ) | |
| # Link "Train & Evaluate" -> train_model function | |
| train_button.click( | |
| fn=train_model, | |
| inputs=[ | |
| dataset_dropdown, | |
| custom_dataset_id, | |
| label_col, | |
| feature_cols, | |
| learning_rate_slider, | |
| n_estimators_slider, | |
| max_depth_slider, | |
| test_size_slider | |
| ], | |
| outputs=[output_text, output_plot], | |
| ) | |
| demo.launch() | |