Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import matplotlib | |
import matplotlib.pyplot as plt | |
from datasets import load_dataset | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score, confusion_matrix | |
matplotlib.use('Agg') | |
################################################################################ | |
# SUGGESTED_DATASETS: These must actually exist on huggingface.co/datasets | |
# | |
# "scikit-learn/iris" -> A small, classic Iris dataset with a "train" split | |
# "uci/wine" -> Another small dataset with a "train" split | |
# "SKIP/ENTER_CUSTOM" -> Placeholder to let the user enter a custom dataset ID | |
################################################################################ | |
SUGGESTED_DATASETS = [ | |
"scikit-learn/iris", | |
"uci/wine", | |
"SKIP/ENTER_CUSTOM" | |
] | |
def update_columns(dataset_id, custom_dataset_id): | |
""" | |
After the user chooses a dataset from the dropdown or enters their own, | |
this function loads the dataset's "train" split, converts it to a DataFrame, | |
and returns the columns. These columns are used to populate the Label and | |
Feature selectors in the UI. | |
""" | |
if dataset_id != "SKIP/ENTER_CUSTOM": | |
final_id = dataset_id | |
else: | |
final_id = custom_dataset_id.strip() | |
try: | |
ds = load_dataset(final_id, split="train") | |
df = pd.DataFrame(ds) | |
cols = df.columns.tolist() | |
message = ( | |
f"**Loaded dataset**: `{final_id}`\n\n" | |
f"**Columns found**: {cols}" | |
) | |
return ( | |
gr.update(choices=cols, value=None), # label_col dropdown | |
gr.update(choices=cols, value=[]), # feature_cols checkbox group | |
message | |
) | |
except Exception as e: | |
err_msg = f"**Error loading** `{final_id}`: {e}" | |
return ( | |
gr.update(choices=[], value=None), | |
gr.update(choices=[], value=[]), | |
err_msg | |
) | |
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns, | |
learning_rate, n_estimators, max_depth, test_size): | |
""" | |
1. Decide which dataset ID to load (from dropdown or custom). | |
2. Load that dataset's 'train' split, turn into DataFrame, extract X (features) and y (label). | |
3. Train a GradientBoostingClassifier on X_train, y_train. | |
4. Compute accuracy and confusion matrix on X_test, y_test. | |
5. Plot and return feature importances + confusion matrix heatmap + textual summary. | |
""" | |
# Resolve final dataset ID | |
if dataset_id != "SKIP/ENTER_CUSTOM": | |
final_id = dataset_id | |
else: | |
final_id = custom_dataset_id.strip() | |
# Load dataset -> df | |
ds = load_dataset(final_id, split="train") | |
df = pd.DataFrame(ds) | |
# Validate columns | |
if label_column not in df.columns: | |
raise ValueError(f"Label column '{label_column}' not found in dataset columns.") | |
for fc in feature_columns: | |
if fc not in df.columns: | |
raise ValueError(f"Feature column '{fc}' not found in dataset columns.") | |
# Convert to NumPy arrays | |
X = df[feature_columns].values | |
y = df[label_column].values | |
# Train/test split | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=test_size, random_state=42 | |
) | |
# Instantiate and train GradientBoostingClassifier | |
clf = GradientBoostingClassifier( | |
learning_rate=learning_rate, | |
n_estimators=int(n_estimators), | |
max_depth=int(max_depth), | |
random_state=42 | |
) | |
clf.fit(X_train, y_train) | |
# Evaluate | |
y_pred = clf.predict(X_test) | |
accuracy = accuracy_score(y_test, y_pred) | |
cm = confusion_matrix(y_test, y_pred) | |
# Create Matplotlib figure with feature importances + confusion matrix | |
fig, axs = plt.subplots(1, 2, figsize=(10, 4)) | |
# Subplot 1: Feature Importances | |
importances = clf.feature_importances_ | |
axs[0].barh(range(len(feature_columns)), importances, color='skyblue') | |
axs[0].set_yticks(range(len(feature_columns))) | |
axs[0].set_yticklabels(feature_columns) | |
axs[0].set_xlabel("Importance") | |
axs[0].set_title("Feature Importances") | |
# Subplot 2: Confusion Matrix Heatmap | |
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) | |
axs[1].set_title("Confusion Matrix") | |
plt.colorbar(im, ax=axs[1]) | |
axs[1].set_xlabel("Predicted") | |
axs[1].set_ylabel("True") | |
# Optionally annotate each cell with numeric counts | |
thresh = cm.max() / 2.0 | |
for i in range(cm.shape[0]): | |
for j in range(cm.shape[1]): | |
color = "white" if cm[i, j] > thresh else "black" | |
axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color) | |
plt.tight_layout() | |
# Textual summary | |
text_summary = ( | |
f"**Dataset used**: `{final_id}`\n\n" | |
f"**Label column**: `{label_column}`\n\n" | |
f"**Feature columns**: `{feature_columns}`\n\n" | |
f"**Accuracy**: {accuracy:.3f}\n\n" | |
) | |
return text_summary, fig | |
############################################################################### | |
# Gradio UI | |
############################################################################### | |
with gr.Blocks() as demo: | |
# High-level title and description | |
gr.Markdown( | |
""" | |
# Introduction to Gradient Boosting | |
This Space demonstrates how to train a [GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#gradientboostingclassifier) from **scikit-learn** on **tabular datasets** hosted on the [Hugging Face Hub](https://huggingface.co/datasets). | |
Gradient Boosting is an ensemble machine learning technique that combines many weak learners (usually small decision trees) in an iterative, stage-wise fashion to create a stronger overall model. | |
In each step, the algorithm fits a new weak learner to the current errors of the combined ensemble, effectively allowing the model to focus on the hardest-to-predict data points. | |
By repeatedly adding these specialized trees, Gradient Boosting can capture complex patterns and deliver high predictive accuracy, especially on tabular data. | |
**Put simply, Gradient Boosting makes a big deal out of small anomolies!** | |
**Purpose**: | |
- Easily explore hyperparameters (_learning_rate, n_estimators, max_depth_) and quickly train an ML model on real data. | |
- Visualise model performance via confusion matrix heatmap and a feature importance plot. | |
**Notes**: | |
- The dataset must have a **"train"** split with tabular columns (i.e., no nested structures). | |
- Large datasets may take time to download/train. | |
- The confusion matrix helps you see how predictions compare to ground-truth labels. The diagonal cells show correct predictions; off-diagonal cells indicate misclassifications. | |
- The feature importance plot shows which features the model relies on the most for its predictions. | |
--- | |
**Usage**: | |
1. Select one of the suggested datasets from the dropdown _or_ enter any valid dataset from the [Hugging Face Hub](https://huggingface.co/datasets). | |
2. Click **Load Columns** to retrieve the column names from the dataset's **train** split. | |
3. Choose exactly _one_ **Label column** (the target) and one or more **Feature columns** (the inputs). | |
4. Adjust hyperparameters (learning_rate, n_estimators, max_depth, test_size). | |
5. Click **Train & Evaluate** to train a Gradient Boosting model and see its accuracy, feature importances, and confusion matrix. | |
You are now a machine learning engineer, congratulations π€ | |
--- | |
""" | |
) | |
with gr.Row(): | |
dataset_dropdown = gr.Dropdown( | |
label="Choose suggested dataset", | |
choices=SUGGESTED_DATASETS, | |
value=SUGGESTED_DATASETS[0] | |
) | |
custom_dataset_id = gr.Textbox( | |
label="Or enter a custom dataset ID", | |
placeholder="e.g. user/my_custom_dataset" | |
) | |
load_cols_btn = gr.Button("Load Columns") | |
load_cols_info = gr.Markdown() | |
with gr.Row(): | |
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)") | |
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)") | |
# Model Hyperparameters | |
learning_rate_slider = gr.Slider( | |
minimum=0.01, maximum=1.0, value=0.1, step=0.01, | |
label="learning_rate" | |
) | |
n_estimators_slider = gr.Slider( | |
minimum=50, maximum=300, value=100, step=50, | |
label="n_estimators" | |
) | |
max_depth_slider = gr.Slider( | |
minimum=1, maximum=10, value=3, step=1, | |
label="max_depth" | |
) | |
test_size_slider = gr.Slider( | |
minimum=0.1, maximum=0.9, value=0.3, step=0.1, | |
label="test_size fraction (0.1-0.9)" | |
) | |
train_button = gr.Button("Train & Evaluate") | |
output_text = gr.Markdown() | |
output_plot = gr.Plot() | |
# Link the "Load Columns" button -> update_columns function | |
load_cols_btn.click( | |
fn=update_columns, | |
inputs=[dataset_dropdown, custom_dataset_id], | |
outputs=[label_col, feature_cols, load_cols_info], | |
) | |
# Link "Train & Evaluate" -> train_model function | |
train_button.click( | |
fn=train_model, | |
inputs=[ | |
dataset_dropdown, | |
custom_dataset_id, | |
label_col, | |
feature_cols, | |
learning_rate_slider, | |
n_estimators_slider, | |
max_depth_slider, | |
test_size_slider | |
], | |
outputs=[output_text, output_plot], | |
) | |
demo.launch() | |