ZennyKenny's picture
fix visualisations + add heatmap
e252d2c verified
raw
history blame
5.12 kB
import gradio as gr
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
# This line ensures Matplotlib doesn't try to open windows in certain environments:
matplotlib.use('Agg')
# Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target
feature_names = iris.feature_names
class_names = iris.target_names
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
def train_and_evaluate(learning_rate, n_estimators, max_depth):
# Train the model
clf = GradientBoostingClassifier(
learning_rate=learning_rate,
n_estimators=n_estimators,
max_depth=int(max_depth),
random_state=42
)
clf.fit(X_train, y_train)
# Predict on test set
y_pred = clf.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
# Calculate confusion matrix
cm = confusion_matrix(y_test, y_pred)
# Create a single figure with 2 subplots
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
# --- Subplot 1: Feature Importances ---
importances = clf.feature_importances_
axs[0].barh(range(len(feature_names)), importances, color='skyblue')
axs[0].set_yticks(range(len(feature_names)))
axs[0].set_yticklabels(feature_names)
axs[0].set_xlabel("Importance")
axs[0].set_title("Feature Importances")
# --- Subplot 2: Confusion Matrix Heatmap ---
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
axs[1].set_title("Confusion Matrix")
# Add colorbar
cbar = fig.colorbar(im, ax=axs[1])
# Tick marks for x/y axes
axs[1].set_xticks(range(len(class_names)))
axs[1].set_yticks(range(len(class_names)))
axs[1].set_xticklabels(class_names, rotation=45, ha="right")
axs[1].set_yticklabels(class_names)
axs[1].set_ylabel('True Label')
axs[1].set_xlabel('Predicted Label')
# Write the counts in each cell
thresh = cm.max() / 2.0
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
color = "white" if cm[i, j] > thresh else "black"
axs[1].text(j, i, format(cm[i, j], "d"),
ha="center", va="center", color=color)
plt.tight_layout()
# Return textual results + the figure
results_text = f"Accuracy: {accuracy:.3f}"
return results_text, fig
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
learning_rate, n_estimators, max_depth):
clf = GradientBoostingClassifier(
learning_rate=learning_rate,
n_estimators=n_estimators,
max_depth=int(max_depth),
random_state=42
)
clf.fit(X_train, y_train)
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
prediction = clf.predict(user_sample)[0]
return f"Predicted species: {class_names[prediction]}"
with gr.Blocks() as demo:
with gr.Tab("Train & Evaluate"):
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
train_button = gr.Button("Train & Evaluate")
output_text = gr.Textbox(label="Results")
output_plot = gr.Plot(label="Feature Importances & Confusion Matrix")
train_button.click(
fn=train_and_evaluate,
inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider],
outputs=[output_text, output_plot],
)
with gr.Tab("Predict"):
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
predict_button = gr.Button("Predict")
prediction_text = gr.Textbox(label="Prediction")
predict_button.click(
fn=predict_species,
inputs=[
sepal_length_input,
sepal_width_input,
petal_length_input,
petal_width_input,
learning_rate_slider2,
n_estimators_slider2,
max_depth_slider2,
],
outputs=prediction_text
)
demo.launch()