if Platform.cmdline then | |
return | |
end | |
------------------ Math functions ------------------------ | |
--- Caclulate the difference between 2 given angles in minutes; the result is from -180*60 to 180*60 minutes. | |
-- @cstyle int AngleDiff(int a1, int a2). | |
-- @param a1 int; angle 1 in minutes. | |
-- @param a2 int; angle 2 in minutes. | |
-- @return int; difference in minutes. | |
-- reimplemented in C in luaExports.cpp | |
--- Caclulates the closest angle from given list to the angle 'a' given. | |
-- @cstyle int ClosestAngle(int a, ...) | |
-- @param a int; angle in minutes. | |
-- @return int, int; the closest angle and the min difference. | |
function ClosestAngle(a, ...) | |
local best_diff, angle = 1000000, false | |
for _, v in pairs{...} do | |
local diff = abs(AngleDiff(v, a)) | |
if best_diff > diff then | |
best_diff = diff | |
angle = v | |
end | |
end | |
return angle, angle and best_diff or false | |
end | |
--- Clamps an angle value between a minimum and maximum angle. | |
-- @param a int The angle value to clamp. | |
-- @param min int The minimum angle value. | |
-- @param max int The maximum angle value. | |
-- @return int The clamped angle value. | |
function ClampAngle(a, min, max) | |
local diff1, diff2 = AngleDiff(a, min), AngleDiff(a, max) | |
if diff1 < 0 and diff2 > 0 then | |
return -diff1 > diff2 and max or min | |
end | |
return a | |
end | |
--- Rotates given point around arbitrary center. | |
-- @cstyle point RotateAroundCenter(point center, point pt, int angle). | |
-- @param center point, the rotation center. | |
-- @param pt point, the point to rotate. | |
-- @param angle int, angle to rotate in minutes. | |
-- @return point; the rotated point. | |
function RotateAroundCenter(center, pt, angle, new_len) | |
local len = new_len or (pt-center):Len() | |
return center + SetLen(Rotate(pt-center, angle), len) | |
end | |
--- Performs a double multiplication and division with truncation. | |
-- This function first performs a multiplication and division with truncation, and then performs another multiplication and division with truncation on the result. | |
-- @param a number The first number to multiply. | |
-- @param b number The second number to multiply. | |
-- @param c number The number to divide by. | |
-- @return number The result of the double multiplication and division with truncation. | |
function MulDivTrunc2(a, b, c) | |
return MulDivTrunc(MulDivTrunc(a, b, c), b, c) | |
end | |
--- Calculates the trajectory of an object given the starting and ending positions, the time of travel, and the acceleration due to gravity. | |
-- @param from point The starting position of the object. | |
-- @param to point The ending position of the object. | |
-- @param time number The time of travel in seconds. | |
-- @param g number The acceleration due to gravity in meters per second squared. | |
-- @return function, number The trajectory function and the angle of the trajectory in radians. | |
function TrajectoryTime(from, to, time, g) | |
local delta = (to - from):SetInvalidZ() | |
local d = delta:Len() | |
local angle = atan(MulDivTrunc(time, time * g, 1000 * 1000), 2 * d) | |
local v = sqrt(d * g) * 4096 / (sin(2 * angle)) | |
local z_error = 0 | |
local function f(t) | |
local error_compensation = z_error * t / time -- compensate error | |
local x = d * t / time | |
local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle)) | |
return from + (delta * Clamp(t, 0, time) / time):SetZ(h + from:z() + error_compensation) | |
end | |
z_error = to:z() - f(time):z() | |
return f, angle / 60 | |
end | |
-- angle is in minutes | |
--- Calculates the trajectory of an object given the starting and ending positions, the angle of the trajectory, and the acceleration due to gravity. | |
-- @param from point The starting position of the object. | |
-- @param to point The ending position of the object. | |
-- @param angle number The angle of the trajectory in radians. | |
-- @param g number The acceleration due to gravity in meters per second squared. | |
-- @return function, number The trajectory function and the time of travel in seconds. | |
function TrajectoryAngle(from, to, angle, g) | |
local delta = (to - from):SetInvalidZ() | |
local d = delta:Len() | |
local v = sqrt(d * g) * 4096 / (sin(2 * angle)) | |
local time = MulDivTrunc(d, 4098000, v * cos(angle)) | |
local z_error = 0 | |
local function f(t) | |
local error_compensation = z_error * t / time -- compensate error | |
local x = d * t / time -- mult * 100 | |
local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle)) | |
return from + (delta * Clamp(t, 0, time) / time):SetZ(h + error_compensation) | |
end | |
z_error = to:z() - f(time):z() | |
return f, time | |
end | |
--- Perfrom quadratic interpolation over 3 values(to, (from-to)*med, from). | |
-- @cstyle lerp_function Qerp(int from, int to, int med, int total_time, capped). | |
-- @param from int; starting interpolation value. | |
-- @param to int; ending interpolation value. | |
-- @param med int; percentage from 1 to 99 which defines the return value when time parameter is total_time/2(3rd key value). | |
-- @param total_time int. | |
-- @param capped bool; if capped is true then the returned values is always in the range [to..from]. | |
-- @return function; a function that given a time from 0 to total_time will return the interpolated value. | |
function Qerp(from, to, med, total_time, capped) | |
if total_time == 0 then | |
return | |
function() | |
return to | |
end | |
end | |
local a, b = 200 - 4 * med, 4 * med - 100 | |
local delta = to - from | |
return | |
function(time) | |
if capped then | |
if time < 0 then | |
return from | |
end | |
if time >= total_time then | |
return to | |
end | |
end | |
local t = ((delta*time/total_time)*time/total_time)*a/100 + (delta*time/total_time)*b/100 | |
return from + t | |
end | |
end | |
--- Given 2 points it return those points with Zs modified so they can be interpolated i.e. both have valid Zs or both have invalid Zs. | |
-- effectively if one of the point is with invalid Z and the other is with valid z then the function returns the first point with z = terrain haight and the second point unmodified. | |
-- @cstyle point, point CalcZForInterpolation(p1, p2). | |
-- @param p1 int; first point. | |
-- @param p2 int; second point. | |
-- @return point, point; points good for interpolation. | |
function CalcZForInterpolation(p1, p2) | |
local p1_isvalid_z, p2_isvalid_z = p1:IsValidZ(), p2:IsValidZ() | |
if p1_isvalid_z ~= p2_isvalid_z then | |
return p1_isvalid_z and p1 or p1:SetZ(terrain.GetHeight(p1)), p2_isvalid_z and p2 or p2:SetZ(terrain.GetHeight(p2)) | |
end | |
return p1, p2 | |
end | |
--- Perfrom linear interpolation over 2 values. | |
-- @cstyle lerp_function ValueLerp(int from, int to, int total_time). | |
-- @param from int; starting interpolation value. | |
-- @param to int; ending interpolation value. | |
-- @param total_time int. | |
-- @param capped bool; if capped is true then the returned values is always in the range [to..from]. | |
-- @return function; a function that given a time from 0 to total_time will return the interpolated value. | |
function ValueLerp(from, to, total_time, capped) | |
if IsPoint(from) then | |
from, to = CalcZForInterpolation(from, to) | |
end | |
local delta = to - from | |
if total_time == 0 then | |
return | |
function() | |
return to | |
end | |
end | |
local useMulDiv = not capped | |
if not useMulDiv then | |
local o = MulDivTrunc(delta, total_time, 2147483647) | |
if type(o) == "number" then | |
useMulDiv = o ~= 0 | |
else | |
useMulDiv = o:Len() > 0 | |
end | |
end | |
if useMulDiv then | |
if capped then | |
return | |
function(time) | |
return from + MulDivTrunc(delta, Clamp(time, 0, total_time), total_time) | |
end | |
else | |
return | |
function(time) | |
return from + MulDivTrunc(delta, time, total_time) | |
end | |
end | |
else | |
assert(capped == true) | |
return | |
function(time) | |
return from + delta * Clamp(time, 0, total_time) / total_time | |
end | |
end | |
end | |
--- Perfrom linear interpolation over 2 values over game time. | |
-- @cstyle lerp_function GameTimeLerp(int from, int to, int total_time). | |
-- @param from int; starting interpolation value. | |
-- @param to int; ending interpolation value. | |
-- @param total_time int. | |
-- @param capped bool; if capped is true then the returned values is always in the range [to..from]. | |
-- @return function; a function that given a time from game time "now" to game time "now" + total_time will return the interpolated value. | |
function GameTimeLerp(from, to, total_time, capped) | |
local start_time = GameTime() | |
if IsPoint(from) then | |
from, to = CalcZForInterpolation(from, to) | |
end | |
local delta = to - from | |
if total_time == 0 then | |
return | |
function() | |
return to | |
end | |
end | |
local useMulDiv = not capped | |
if not useMulDiv then | |
local o = MulDivTrunc(delta, total_time, 2147483647) | |
if type(o) == "number" then | |
useMulDiv = o ~= 0 | |
else | |
useMulDiv = o:Len() > 0 | |
end | |
end | |
if useMulDiv then | |
if capped then | |
return | |
function(time) | |
return from + MulDivTrunc(delta, Clamp(time - start_time, 0, total_time), total_time) | |
end | |
else | |
return | |
function(time) | |
return from + MulDivTrunc(delta, time - start_time, total_time) | |
end | |
end | |
else | |
assert(capped == true) | |
return | |
function(time) | |
return from + delta * Clamp(time - start_time, 0, total_time) / total_time | |
end | |
end | |
end | |
--- Perfrom linear interpolation over angles. | |
-- @cstyle lerp_function AngleLerp(int from, int to, int total_time). | |
-- @param from int; starting interpolation value. | |
-- @param to int; ending interpolation value. | |
-- @param total_time int. | |
-- @param capped bool; if capped is true then the returned values is always in the range [to..from]. | |
-- @return function; a function that given a time from 0 to total_time will return the interpolated value. | |
function AngleLerp(from, to, total_time, capped) | |
local delta = AngleDiff(to, from) | |
if total_time == 0 then | |
return | |
function() | |
return to | |
end | |
end | |
return | |
function(time) | |
if capped then | |
if time <= 0 then | |
return from | |
end | |
if time >= total_time then | |
return to | |
end | |
end | |
return AngleNormalize(from + delta * time / total_time) | |
end | |
end | |
--- Returns a point moved a given distance from the source point towards the dest point. | |
-- @cstyle point MovePoint(point src, point dest, int dist). | |
-- @param src point; the source point to move. | |
-- @param dest point; the destination point. | |
-- @param dist int; distance to move. | |
-- @return point. | |
function MovePoint(src, dest, dist) | |
dest, src = CalcZForInterpolation(dest, src) | |
local v = dest - src | |
if v:Len() > dist then v = SetLen(v, dist) end | |
return src + v | |
end | |
--- ATTENTION!!! This function works only in 2D, and returns only points in the same Z. | |
--- Returns the nearest passable point to a point moved a given distance from the source point away from the dest point. | |
-- @cstyle point MovePointAway(point src, point dest, int dist). | |
-- @param src point; the source point to move. | |
-- @param dest point; the destination point. | |
-- @param dist int; distance to move. | |
-- @return point. | |
function MovePointAwayPass(src, dest, dist) | |
local v = dest - src | |
v = SetLen(v, dist) | |
local pt = src - v | |
local pass = GetPassablePointNearby(pt) | |
return pass and terrain.IsPointInBounds(pass) and pass or pt | |
end | |
--- Returns a point moved a given distance from the source point away from the dest point. | |
-- @cstyle point MovePointAway(point src, point dest, int dist). | |
-- @param src point; the source point to move. | |
-- @param dest point; the destination point. | |
-- @param dist int; distance to move. | |
-- @return point. | |
function MovePointAway(src, dest, dist) | |
dest, src = CalcZForInterpolation(dest, src) | |
local v = dest - src | |
v = SetLen(v, dist) | |
return src - v | |
end | |
--- Calculates the angle between two 3D vectors. | |
-- @param v1 point; the first vector | |
-- @param v2 point; the second vector | |
-- @return number; the angle between the two vectors in radians | |
function Angle3dVectors(v1, v2) | |
return acos(MulDivTrunc(Dot(v1, v2), 4096, v1:Len() * v2:Len())) | |
end | |
------------------------------------------------ | |
--- Returns a list of points in a radial pattern around a given position. | |
-- @param n int; the number of points to generate | |
-- @param pos point; the center position | |
-- @param direction point; the direction to orient the radial pattern | |
-- @param radius number; the radius of the radial pattern | |
-- @return table; a list of points in the radial pattern | |
function GetRadialOffsets(n, pos, direction, radius) | |
-- Implementation details | |
end | |
function GetRadialOffsets(n, pos, direction, radius) | |
local off1 = point(-direction:y(), direction:x(), 0) | |
if off1 == point30 then | |
off1 = point(1, 0, 0) | |
end | |
off1 = SetLen(off1, radius) | |
local offs = {off1} | |
for i = 1, n - 1 do | |
table.insert(offs, RotateAxis(off1, direction, (360 * 60 * i) / n)) | |
end | |
return offs | |
end | |
--- Returns a list of points in a radial pattern around a given position. | |
-- @param n int; the number of points to generate | |
-- @param pos point; the center position | |
-- @param direction point; the direction to orient the radial pattern | |
-- @param radius number; the radius of the radial pattern | |
-- @return table; a list of points in the radial pattern | |
function GetRadialPoints(n, pos, direction, radius) | |
local ps = GetRadialOffsets(n, pos, direction, radius) | |
for i = 1, n do | |
ps[i] = pos + ps[i] | |
end | |
return ps | |
end | |
function GetRadialPoints(n, pos, direction, radius) | |
local ps = GetRadialOffsets(n, pos, direction, radius) | |
for i = 1, n do | |
ps[i] = pos + ps[i] | |
end | |
return ps | |
end | |
--- Returns a value scaled between a minimum and maximum value based on a percentage. | |
-- @param min number The minimum value. | |
-- @param max number The maximum value. | |
-- @param perc number The percentage value between 0 and 1. | |
-- @param div number (optional) The divisor to use for the percentage. Defaults to 100. | |
-- @return number The scaled value between min and max. | |
function GetScaledValue(min, max, perc, div) | |
div = div or 100 | |
return min + MulDivRound(max - min, perc, div) | |
end | |
--- Divides a value `v` by a divisor `d` and rounds up the result to the nearest integer. | |
-- @param v number The value to divide. | |
-- @param d number The divisor. | |
-- @return number The result of the division, rounded up to the nearest integer. | |
function DivCeil(v, d) | |
v = v + d - 1 | |
return v / d | |
end | |
-- Re-map value from one range to another range. | |
function MapRange(value, new_range_max, new_range_min, old_range_max, old_range_min) | |
if old_range_max == old_range_min then | |
return new_range_max | |
end | |
return MulDivRound(new_range_max - new_range_min , value - old_range_max, old_range_max - old_range_min) + new_range_max | |
end |