File size: 14,521 Bytes
b6a38d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
if Platform.cmdline then
return
end
------------------ Math functions ------------------------
--- Caclulate the difference between 2 given angles in minutes; the result is from -180*60 to 180*60 minutes.
-- @cstyle int AngleDiff(int a1, int a2).
-- @param a1 int; angle 1 in minutes.
-- @param a2 int; angle 2 in minutes.
-- @return int; difference in minutes.
-- reimplemented in C in luaExports.cpp
--- Caclulates the closest angle from given list to the angle 'a' given.
-- @cstyle int ClosestAngle(int a, ...)
-- @param a int; angle in minutes.
-- @return int, int; the closest angle and the min difference.
function ClosestAngle(a, ...)
local best_diff, angle = 1000000, false
for _, v in pairs{...} do
local diff = abs(AngleDiff(v, a))
if best_diff > diff then
best_diff = diff
angle = v
end
end
return angle, angle and best_diff or false
end
--- Clamps an angle value between a minimum and maximum angle.
-- @param a int The angle value to clamp.
-- @param min int The minimum angle value.
-- @param max int The maximum angle value.
-- @return int The clamped angle value.
function ClampAngle(a, min, max)
local diff1, diff2 = AngleDiff(a, min), AngleDiff(a, max)
if diff1 < 0 and diff2 > 0 then
return -diff1 > diff2 and max or min
end
return a
end
--- Rotates given point around arbitrary center.
-- @cstyle point RotateAroundCenter(point center, point pt, int angle).
-- @param center point, the rotation center.
-- @param pt point, the point to rotate.
-- @param angle int, angle to rotate in minutes.
-- @return point; the rotated point.
function RotateAroundCenter(center, pt, angle, new_len)
local len = new_len or (pt-center):Len()
return center + SetLen(Rotate(pt-center, angle), len)
end
--- Performs a double multiplication and division with truncation.
-- This function first performs a multiplication and division with truncation, and then performs another multiplication and division with truncation on the result.
-- @param a number The first number to multiply.
-- @param b number The second number to multiply.
-- @param c number The number to divide by.
-- @return number The result of the double multiplication and division with truncation.
function MulDivTrunc2(a, b, c)
return MulDivTrunc(MulDivTrunc(a, b, c), b, c)
end
--- Calculates the trajectory of an object given the starting and ending positions, the time of travel, and the acceleration due to gravity.
-- @param from point The starting position of the object.
-- @param to point The ending position of the object.
-- @param time number The time of travel in seconds.
-- @param g number The acceleration due to gravity in meters per second squared.
-- @return function, number The trajectory function and the angle of the trajectory in radians.
function TrajectoryTime(from, to, time, g)
local delta = (to - from):SetInvalidZ()
local d = delta:Len()
local angle = atan(MulDivTrunc(time, time * g, 1000 * 1000), 2 * d)
local v = sqrt(d * g) * 4096 / (sin(2 * angle))
local z_error = 0
local function f(t)
local error_compensation = z_error * t / time -- compensate error
local x = d * t / time
local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle))
return from + (delta * Clamp(t, 0, time) / time):SetZ(h + from:z() + error_compensation)
end
z_error = to:z() - f(time):z()
return f, angle / 60
end
-- angle is in minutes
--- Calculates the trajectory of an object given the starting and ending positions, the angle of the trajectory, and the acceleration due to gravity.
-- @param from point The starting position of the object.
-- @param to point The ending position of the object.
-- @param angle number The angle of the trajectory in radians.
-- @param g number The acceleration due to gravity in meters per second squared.
-- @return function, number The trajectory function and the time of travel in seconds.
function TrajectoryAngle(from, to, angle, g)
local delta = (to - from):SetInvalidZ()
local d = delta:Len()
local v = sqrt(d * g) * 4096 / (sin(2 * angle))
local time = MulDivTrunc(d, 4098000, v * cos(angle))
local z_error = 0
local function f(t)
local error_compensation = z_error * t / time -- compensate error
local x = d * t / time -- mult * 100
local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle))
return from + (delta * Clamp(t, 0, time) / time):SetZ(h + error_compensation)
end
z_error = to:z() - f(time):z()
return f, time
end
--- Perfrom quadratic interpolation over 3 values(to, (from-to)*med, from).
-- @cstyle lerp_function Qerp(int from, int to, int med, int total_time, capped).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param med int; percentage from 1 to 99 which defines the return value when time parameter is total_time/2(3rd key value).
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function Qerp(from, to, med, total_time, capped)
if total_time == 0 then
return
function()
return to
end
end
local a, b = 200 - 4 * med, 4 * med - 100
local delta = to - from
return
function(time)
if capped then
if time < 0 then
return from
end
if time >= total_time then
return to
end
end
local t = ((delta*time/total_time)*time/total_time)*a/100 + (delta*time/total_time)*b/100
return from + t
end
end
--- Given 2 points it return those points with Zs modified so they can be interpolated i.e. both have valid Zs or both have invalid Zs.
-- effectively if one of the point is with invalid Z and the other is with valid z then the function returns the first point with z = terrain haight and the second point unmodified.
-- @cstyle point, point CalcZForInterpolation(p1, p2).
-- @param p1 int; first point.
-- @param p2 int; second point.
-- @return point, point; points good for interpolation.
function CalcZForInterpolation(p1, p2)
local p1_isvalid_z, p2_isvalid_z = p1:IsValidZ(), p2:IsValidZ()
if p1_isvalid_z ~= p2_isvalid_z then
return p1_isvalid_z and p1 or p1:SetZ(terrain.GetHeight(p1)), p2_isvalid_z and p2 or p2:SetZ(terrain.GetHeight(p2))
end
return p1, p2
end
--- Perfrom linear interpolation over 2 values.
-- @cstyle lerp_function ValueLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function ValueLerp(from, to, total_time, capped)
if IsPoint(from) then
from, to = CalcZForInterpolation(from, to)
end
local delta = to - from
if total_time == 0 then
return
function()
return to
end
end
local useMulDiv = not capped
if not useMulDiv then
local o = MulDivTrunc(delta, total_time, 2147483647)
if type(o) == "number" then
useMulDiv = o ~= 0
else
useMulDiv = o:Len() > 0
end
end
if useMulDiv then
if capped then
return
function(time)
return from + MulDivTrunc(delta, Clamp(time, 0, total_time), total_time)
end
else
return
function(time)
return from + MulDivTrunc(delta, time, total_time)
end
end
else
assert(capped == true)
return
function(time)
return from + delta * Clamp(time, 0, total_time) / total_time
end
end
end
--- Perfrom linear interpolation over 2 values over game time.
-- @cstyle lerp_function GameTimeLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from game time "now" to game time "now" + total_time will return the interpolated value.
function GameTimeLerp(from, to, total_time, capped)
local start_time = GameTime()
if IsPoint(from) then
from, to = CalcZForInterpolation(from, to)
end
local delta = to - from
if total_time == 0 then
return
function()
return to
end
end
local useMulDiv = not capped
if not useMulDiv then
local o = MulDivTrunc(delta, total_time, 2147483647)
if type(o) == "number" then
useMulDiv = o ~= 0
else
useMulDiv = o:Len() > 0
end
end
if useMulDiv then
if capped then
return
function(time)
return from + MulDivTrunc(delta, Clamp(time - start_time, 0, total_time), total_time)
end
else
return
function(time)
return from + MulDivTrunc(delta, time - start_time, total_time)
end
end
else
assert(capped == true)
return
function(time)
return from + delta * Clamp(time - start_time, 0, total_time) / total_time
end
end
end
--- Perfrom linear interpolation over angles.
-- @cstyle lerp_function AngleLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function AngleLerp(from, to, total_time, capped)
local delta = AngleDiff(to, from)
if total_time == 0 then
return
function()
return to
end
end
return
function(time)
if capped then
if time <= 0 then
return from
end
if time >= total_time then
return to
end
end
return AngleNormalize(from + delta * time / total_time)
end
end
--- Returns a point moved a given distance from the source point towards the dest point.
-- @cstyle point MovePoint(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePoint(src, dest, dist)
dest, src = CalcZForInterpolation(dest, src)
local v = dest - src
if v:Len() > dist then v = SetLen(v, dist) end
return src + v
end
--- ATTENTION!!! This function works only in 2D, and returns only points in the same Z.
--- Returns the nearest passable point to a point moved a given distance from the source point away from the dest point.
-- @cstyle point MovePointAway(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePointAwayPass(src, dest, dist)
local v = dest - src
v = SetLen(v, dist)
local pt = src - v
local pass = GetPassablePointNearby(pt)
return pass and terrain.IsPointInBounds(pass) and pass or pt
end
--- Returns a point moved a given distance from the source point away from the dest point.
-- @cstyle point MovePointAway(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePointAway(src, dest, dist)
dest, src = CalcZForInterpolation(dest, src)
local v = dest - src
v = SetLen(v, dist)
return src - v
end
--- Calculates the angle between two 3D vectors.
-- @param v1 point; the first vector
-- @param v2 point; the second vector
-- @return number; the angle between the two vectors in radians
function Angle3dVectors(v1, v2)
return acos(MulDivTrunc(Dot(v1, v2), 4096, v1:Len() * v2:Len()))
end
------------------------------------------------
--- Returns a list of points in a radial pattern around a given position.
-- @param n int; the number of points to generate
-- @param pos point; the center position
-- @param direction point; the direction to orient the radial pattern
-- @param radius number; the radius of the radial pattern
-- @return table; a list of points in the radial pattern
function GetRadialOffsets(n, pos, direction, radius)
-- Implementation details
end
function GetRadialOffsets(n, pos, direction, radius)
local off1 = point(-direction:y(), direction:x(), 0)
if off1 == point30 then
off1 = point(1, 0, 0)
end
off1 = SetLen(off1, radius)
local offs = {off1}
for i = 1, n - 1 do
table.insert(offs, RotateAxis(off1, direction, (360 * 60 * i) / n))
end
return offs
end
--- Returns a list of points in a radial pattern around a given position.
-- @param n int; the number of points to generate
-- @param pos point; the center position
-- @param direction point; the direction to orient the radial pattern
-- @param radius number; the radius of the radial pattern
-- @return table; a list of points in the radial pattern
function GetRadialPoints(n, pos, direction, radius)
local ps = GetRadialOffsets(n, pos, direction, radius)
for i = 1, n do
ps[i] = pos + ps[i]
end
return ps
end
function GetRadialPoints(n, pos, direction, radius)
local ps = GetRadialOffsets(n, pos, direction, radius)
for i = 1, n do
ps[i] = pos + ps[i]
end
return ps
end
--- Returns a value scaled between a minimum and maximum value based on a percentage.
-- @param min number The minimum value.
-- @param max number The maximum value.
-- @param perc number The percentage value between 0 and 1.
-- @param div number (optional) The divisor to use for the percentage. Defaults to 100.
-- @return number The scaled value between min and max.
function GetScaledValue(min, max, perc, div)
div = div or 100
return min + MulDivRound(max - min, perc, div)
end
--- Divides a value `v` by a divisor `d` and rounds up the result to the nearest integer.
-- @param v number The value to divide.
-- @param d number The divisor.
-- @return number The result of the division, rounded up to the nearest integer.
function DivCeil(v, d)
v = v + d - 1
return v / d
end
-- Re-map value from one range to another range.
function MapRange(value, new_range_max, new_range_min, old_range_max, old_range_min)
if old_range_max == old_range_min then
return new_range_max
end
return MulDivRound(new_range_max - new_range_min , value - old_range_max, old_range_max - old_range_min) + new_range_max
end |