File size: 14,521 Bytes
b6a38d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
if Platform.cmdline then
	return
end

------------------ Math functions ------------------------

--- Caclulate the difference between 2 given angles in minutes; the result is from -180*60 to 180*60 minutes.
-- @cstyle int AngleDiff(int a1, int a2).
-- @param a1 int; angle 1 in minutes.
-- @param a2 int; angle 2 in minutes.
-- @return int; difference in minutes.
-- reimplemented in C in luaExports.cpp

--- Caclulates the closest angle from given list to the angle 'a' given.
-- @cstyle int ClosestAngle(int a, ...)
-- @param a int; angle in minutes.
-- @return int, int; the closest angle and the min difference.
function ClosestAngle(a, ...)
	local best_diff, angle = 1000000, false
	for _, v in pairs{...} do
		local diff = abs(AngleDiff(v, a))
		if best_diff > diff then
			best_diff = diff
			angle = v
		end
	end
	return angle, angle and best_diff or false
end

--- Clamps an angle value between a minimum and maximum angle.
-- @param a int The angle value to clamp.
-- @param min int The minimum angle value.
-- @param max int The maximum angle value.
-- @return int The clamped angle value.
function ClampAngle(a, min, max)
    local diff1, diff2 = AngleDiff(a, min), AngleDiff(a, max)
    if diff1 < 0 and diff2 > 0 then
        return -diff1 > diff2 and max or min
    end
    return a
end

--- Rotates given point around arbitrary center.
-- @cstyle point RotateAroundCenter(point center, point pt, int angle).
-- @param center point, the rotation center.
-- @param pt point, the point to rotate.
-- @param angle int, angle to rotate in minutes.
-- @return point; the rotated point.
function RotateAroundCenter(center, pt, angle, new_len)
	local len = new_len or (pt-center):Len()
	return center + SetLen(Rotate(pt-center, angle), len)
end

--- Performs a double multiplication and division with truncation.
-- This function first performs a multiplication and division with truncation, and then performs another multiplication and division with truncation on the result.
-- @param a number The first number to multiply.
-- @param b number The second number to multiply.
-- @param c number The number to divide by.
-- @return number The result of the double multiplication and division with truncation.
function MulDivTrunc2(a, b, c)
    return MulDivTrunc(MulDivTrunc(a, b, c), b, c)
end

--- Calculates the trajectory of an object given the starting and ending positions, the time of travel, and the acceleration due to gravity.
-- @param from point The starting position of the object.
-- @param to point The ending position of the object.
-- @param time number The time of travel in seconds.
-- @param g number The acceleration due to gravity in meters per second squared.
-- @return function, number The trajectory function and the angle of the trajectory in radians.
function TrajectoryTime(from, to, time, g)
    local delta = (to - from):SetInvalidZ()
    local d = delta:Len()
    local angle = atan(MulDivTrunc(time, time * g, 1000 * 1000), 2 * d)
    local v = sqrt(d * g) * 4096 / (sin(2 * angle))

    local z_error = 0

    local function f(t)
        local error_compensation = z_error * t / time -- compensate error
        local x = d * t / time
        local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle))
        return from + (delta * Clamp(t, 0, time) / time):SetZ(h + from:z() + error_compensation)
    end

    z_error = to:z() - f(time):z()

    return f, angle / 60
end

-- angle is in minutes
--- Calculates the trajectory of an object given the starting and ending positions, the angle of the trajectory, and the acceleration due to gravity.
-- @param from point The starting position of the object.
-- @param to point The ending position of the object.
-- @param angle number The angle of the trajectory in radians.
-- @param g number The acceleration due to gravity in meters per second squared.
-- @return function, number The trajectory function and the time of travel in seconds.
function TrajectoryAngle(from, to, angle, g)
    local delta = (to - from):SetInvalidZ()
    local d = delta:Len()
    local v = sqrt(d * g) * 4096 / (sin(2 * angle))
    local time = MulDivTrunc(d, 4098000, v * cos(angle))
    local z_error = 0

    local function f(t)
        local error_compensation = z_error * t / time -- compensate error
        local x = d * t / time -- mult * 100

        local h = x * sin(angle) / cos(angle) - MulDivTrunc2(MulDivTrunc2(g / 2, x, v), 4096, cos(angle))
        return from + (delta * Clamp(t, 0, time) / time):SetZ(h + error_compensation)
    end
    z_error = to:z() - f(time):z()
    return f, time
end

--- Perfrom quadratic interpolation over 3 values(to, (from-to)*med, from).
-- @cstyle lerp_function Qerp(int from, int to, int med, int total_time, capped).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param med int; percentage from 1 to 99 which defines the return value when time parameter is total_time/2(3rd key value).
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function Qerp(from, to, med, total_time, capped)
	if total_time == 0 then
		return
			function()
				return to
			end
	end
	local a, b = 200 - 4 * med, 4 * med - 100
	local delta = to - from
	return
		function(time)
			if capped then
				if time < 0 then
					return from
				end
				if time >= total_time then
					return to
				end
			end
			local t = ((delta*time/total_time)*time/total_time)*a/100 + (delta*time/total_time)*b/100
			return from + t
		end
end

--- Given 2 points it return those points with Zs modified so they can be interpolated i.e. both have valid Zs or both have invalid Zs.
-- effectively if one of the point is with invalid Z and the other is with valid z then the function returns the first point with z = terrain haight and the second point unmodified.
-- @cstyle point, point CalcZForInterpolation(p1, p2).
-- @param p1 int; first point.
-- @param p2 int; second point.
-- @return point, point; points good for interpolation.
function CalcZForInterpolation(p1, p2)
	local p1_isvalid_z, p2_isvalid_z = p1:IsValidZ(), p2:IsValidZ()
	if p1_isvalid_z ~= p2_isvalid_z then
		return p1_isvalid_z and p1 or p1:SetZ(terrain.GetHeight(p1)), p2_isvalid_z and p2 or p2:SetZ(terrain.GetHeight(p2))
	end
	return p1, p2
end

--- Perfrom linear interpolation over 2 values.
-- @cstyle lerp_function ValueLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function ValueLerp(from, to, total_time, capped)
	if IsPoint(from) then
		from, to = CalcZForInterpolation(from, to)
	end

	local delta = to - from
	if total_time == 0 then
		return
			function()
				return to
			end
	end
	local useMulDiv = not capped
	if not useMulDiv then
		local o = MulDivTrunc(delta, total_time, 2147483647)
		if type(o) == "number" then
			useMulDiv = o ~= 0
		else
			useMulDiv = o:Len() > 0
		end
	end
	if useMulDiv then
		if capped then
			return
				function(time)
					return from + MulDivTrunc(delta, Clamp(time, 0, total_time), total_time)
				end
		else
			return
				function(time)
					return from + MulDivTrunc(delta, time, total_time)
				end
		end
	else
		assert(capped == true)
		return
			function(time)
				return from + delta * Clamp(time, 0, total_time) / total_time
			end
	end
end

--- Perfrom linear interpolation over 2 values over game time.
-- @cstyle lerp_function GameTimeLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from game time "now" to game time "now" + total_time will return the interpolated value.
function GameTimeLerp(from, to, total_time, capped)
	local start_time = GameTime()
	if IsPoint(from) then
		from, to = CalcZForInterpolation(from, to)
	end

	local delta = to - from
	if total_time == 0 then
		return
			function()
				return to
			end
	end
	local useMulDiv = not capped
	if not useMulDiv then
		local o = MulDivTrunc(delta, total_time, 2147483647)
		if type(o) == "number" then
			useMulDiv = o ~= 0
		else
			useMulDiv = o:Len() > 0
		end
	end
	if useMulDiv then
		if capped then
			return
				function(time)
					return from + MulDivTrunc(delta, Clamp(time - start_time, 0, total_time), total_time)
				end
		else
			return
				function(time)
					return from + MulDivTrunc(delta, time - start_time, total_time)
				end
		end
	else
		assert(capped == true)
		return
			function(time)
				return from + delta * Clamp(time - start_time, 0, total_time) / total_time
			end
	end
end

--- Perfrom linear interpolation over angles.
-- @cstyle lerp_function AngleLerp(int from, int to, int total_time).
-- @param from int; starting interpolation value.
-- @param to int; ending interpolation value.
-- @param total_time int.
-- @param capped bool; if capped is true then the returned values is always in the range [to..from].
-- @return function; a function that given a time from 0 to total_time will return the interpolated value.
function AngleLerp(from, to, total_time, capped)
	local delta = AngleDiff(to, from)
	if total_time == 0 then
		return
			function()
				return to
			end
	end

	return
		function(time)
			if capped then
				if time <= 0 then
					return from
				end
				if time >= total_time then
					return to
				end
			end
			return AngleNormalize(from + delta * time / total_time)
		end
end

--- Returns a point moved a given distance from the source point towards the dest point.
-- @cstyle point MovePoint(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePoint(src, dest, dist)
	dest, src = CalcZForInterpolation(dest, src)
	local v = dest - src
	if v:Len() > dist then v = SetLen(v, dist) end
	return src + v
end

--- ATTENTION!!! This function works only in 2D, and returns only points in the same Z.
--- Returns the nearest passable point to a point moved a given distance from the source point away from the dest point.
-- @cstyle point MovePointAway(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePointAwayPass(src, dest, dist)
	local v = dest - src
	v = SetLen(v, dist)
	local pt = src - v
	local pass = GetPassablePointNearby(pt)
	return pass and terrain.IsPointInBounds(pass) and pass or pt
end

--- Returns a point moved a given distance from the source point away from the dest point.
-- @cstyle point MovePointAway(point src, point dest, int dist).
-- @param src point; the source point to move.
-- @param dest point; the destination point.
-- @param dist int; distance to move.
-- @return point.
function MovePointAway(src, dest, dist)
	dest, src = CalcZForInterpolation(dest, src)
	local v = dest - src
	v = SetLen(v, dist)
	return src - v
end

--- Calculates the angle between two 3D vectors.
-- @param v1 point; the first vector
-- @param v2 point; the second vector
-- @return number; the angle between the two vectors in radians
function Angle3dVectors(v1, v2)
    return acos(MulDivTrunc(Dot(v1, v2), 4096, v1:Len() * v2:Len()))
end

------------------------------------------------

--- Returns a list of points in a radial pattern around a given position.
-- @param n int; the number of points to generate
-- @param pos point; the center position
-- @param direction point; the direction to orient the radial pattern
-- @param radius number; the radius of the radial pattern
-- @return table; a list of points in the radial pattern
function GetRadialOffsets(n, pos, direction, radius)
    -- Implementation details
end
function GetRadialOffsets(n, pos, direction, radius)
    local off1 = point(-direction:y(), direction:x(), 0)
    if off1 == point30 then
        off1 = point(1, 0, 0)
    end
    off1 = SetLen(off1, radius)
    local offs = {off1}
    for i = 1, n - 1 do
        table.insert(offs, RotateAxis(off1, direction, (360 * 60 * i) / n))
    end
    return offs
end

--- Returns a list of points in a radial pattern around a given position.
-- @param n int; the number of points to generate
-- @param pos point; the center position
-- @param direction point; the direction to orient the radial pattern
-- @param radius number; the radius of the radial pattern
-- @return table; a list of points in the radial pattern
function GetRadialPoints(n, pos, direction, radius)
    local ps = GetRadialOffsets(n, pos, direction, radius)
    for i = 1, n do
        ps[i] = pos + ps[i]
    end
    return ps
end
function GetRadialPoints(n, pos, direction, radius)
    local ps = GetRadialOffsets(n, pos, direction, radius)
    for i = 1, n do
        ps[i] = pos + ps[i]
    end
    return ps
end

--- Returns a value scaled between a minimum and maximum value based on a percentage.
-- @param min number The minimum value.
-- @param max number The maximum value.
-- @param perc number The percentage value between 0 and 1.
-- @param div number (optional) The divisor to use for the percentage. Defaults to 100.
-- @return number The scaled value between min and max.
function GetScaledValue(min, max, perc, div)
    div = div or 100
    return min + MulDivRound(max - min, perc, div)
end

--- Divides a value `v` by a divisor `d` and rounds up the result to the nearest integer.
-- @param v number The value to divide.
-- @param d number The divisor.
-- @return number The result of the division, rounded up to the nearest integer.
function DivCeil(v, d)
    v = v + d - 1
    return v / d
end

-- Re-map value from one range to another range.
function MapRange(value, new_range_max, new_range_min, old_range_max, old_range_min)
	if old_range_max == old_range_min then
		return new_range_max
	end
	return MulDivRound(new_range_max - new_range_min , value - old_range_max, old_range_max - old_range_min) + new_range_max
end