simonraj's picture
Create app.py
dd2a3b9 verified
raw
history blame
4.59 kB
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
from PIL import Image
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
from transformers import TextIteratorStreamer
import time
from threading import Thread
import torch
import spaces
model_id = "microsoft/Phi-3-vision-128k-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model.to("cuda:0")
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Fitness Coach: Arnold Style</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Upload your exercise photo and get short, powerful coaching tips from the best!</p>
</div>
"""
@spaces.GPU
def bot_streaming(message, history):
print(f'message is - {message}')
print(f'history is - {history}')
if message["files"]:
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
except NameError:
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
conversation = []
flag = False
for user, assistant in history:
if assistant is None:
flag = True
conversation.extend([{"role": "user", "content": ""}])
continue
if flag == True:
conversation[0]['content'] = f"<|image_1|>\n{user}"
conversation.extend([{"role": "assistant", "content": assistant}])
flag = False
continue
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
if len(history) == 0:
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
else:
conversation.append({"role": "user", "content": message['text']})
print(f"prompt is -\n{conversation}")
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
image = Image.open(image)
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces': False,})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=280, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True,) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="Fitness Coach: Arnold Style",
examples=[
{"text": "Identify and provide coaching cues for this exercise.", "files": ["./squat.jpg"]},
{"text": "What improvements can I make?", "files": ["./pushup.jpg"]},
{"text": "How is my form?", "files": ["./plank.jpg"]},
{"text": "Give me some tips to improve my deadlift.", "files": ["./deadlift.jpg"]}
],
description="Upload an image of your exercise, and the fitness coach will identify the exercise and provide concise coaching cues to improve your form. Responses are limited to 280 characters.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
cache_examples=False,
examples_per_page=3
)
demo.queue()
demo.launch(debug=True, quiet=True)